精英家教网 > 高中数学 > 题目详情
若实数x,y满足约束条件
x+y≥0
x-y+3≥0
0≤x≤3
,则z=2x-y
的最大值为(  )
A、-
9
2
B、11
C、0
D、9
分析:首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x-z在y轴上的截距最小时,z有最大值,求出此时直线y=2x-z经过的可行域内的点的坐标,代入z=2x-y中即可.
解答:精英家教网解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x-y有最大值9.
故选D
点评:本题考查线性规划问题,考查数形结合思想,解答的步骤是有两种方法:一种是:画出可行域画法,标明函数几何意义,得出最优解.另一种方法是:由约束条件画出可行域,求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x+2y≥3
2x+y≤3
,且x≥0,则x-y的最大值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
5x+3y≤15
y≤x+1
x-5y≤3
,则z=3x+5y
的最大值为
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x+1≥0
x-y+1≤0
x+y-2≤0
,则z=4x+y的最大值为
7
2
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x+y≥0
y≤x+2
0≤x≤1
,则z=2x-y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)若实数x、y满足约束条件
x≥0
y≥0
2x+y-24≤0
-3x+y+6≥0
则目标函数z=2x-3y的最小值是(  )

查看答案和解析>>

同步练习册答案