精英家教网 > 高中数学 > 题目详情

【题目】已知点是抛物线的焦点,直线与抛物线相切于点,连接交抛物线于另一点,过点的垂线交抛物线于另一点.

1)若,求直线的方程;

2)求三角形面积的最小值.

【答案】1,(216

【解析】

(1)求得,再设直线的方程,联立抛物线方程令二次方程求解即可.

(2)设切线的方程为,,,根据,,三点共线求得,再化简求得到直线的距离,进而表达出三角形面积,再利用基本不等式的方法求最小值即可.

1)由,

设直线的方程为,

,

因为直线与抛物线相切,故,解得.

故所求直线的方程,即.

2)设切线的方程为,,,

又由,,三点共线,故,,,

化简可得,,

,

,

因为直线与抛物线相切,故,即,

故直线的方程为,,

因此点到直线的距离为

,

,,,

,

所以

等号成立当且仅当,即时等号成立.

此时三角形面积的最小值为16.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点是椭圆上的一个动点,且面积的最大值为.

1)求椭圆的方程;

2)过点作直线交椭圆两点,过点作直线的垂线交圆:于另一点.的面积为3,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列共有项,记该数列前中的最大项为,该数列后中的最小项为123.

1)若数列的通项公式为,求数列的通项公式;

2)若数列是单调数列,且满足,求数列的通项公式;

3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,若是正整数,且,则称D-数列”.

(1) 举出一个前五项均不为零的D-数列”(只要求依次写出该数列的前五项)

(2) D-数列中,,数列满足,写出数列的通项公式,并分别判断当时,的极限是否存在,如果存在,求出其极限值(若不存在不需要交代理由)

(3) 证明: D-数列中的最大项为,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(为参数),存在一条直线,使得此直线被这些椭圆截得的线段长都等于,求直线方程_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数

1)若函数是偶函数,求实数的值;

2)若,求函数的最小值;

3)对于函数,在定义域内给定区间,如果存在,满足,则称函数是区间上的平均值函数是它的一个均值点.如函数上的平均值函数,就是它的均值点.现有函数是区间上的平均值函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来某企业每年消耗电费约24万元为了节能减排决定安装一个可使用15年的太阳能供电设备接入本企业电网安装这种供电设备的工本费(单位万元)与太阳能电池板的面积(单位平方米)成正比比例系数约为0.5为了保证正常用电安装后采用太阳能和电能互补供电的模式假设在此模式下安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和

(1)试解释的实际意义并建立关于的函数关系式

(2)为多少平方米时取得最小值最小值是多少万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若关于的方程有四个不同的解,,,,求实数,应满足的条件;

(3)在(2)条件下,若,,,成等比数列,求表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,侧面为正三角形,,平面平面为棱上一点(不与重合),平面交棱于点.

1)求证:

2)若二面角的余弦值为,求点到平面的距离.

查看答案和解析>>

同步练习册答案