精英家教网 > 高中数学 > 题目详情
已知f(x)=
cx
2x+3
(c为常数),满足f[f(x)]=x.求f(x).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:由题意,求出f[f(x)],利用函数恒等式列出方程组,求出c的值即得f(x)的解析式.
解答: 解:∵f(x)=
cx
2x+3

∴f[f(x)]=f[
cx
2x+3
]
=
c•
cx
2x+3
2•
cx
2x+3
+3

=
c2x
(2c+6)x+9
=x;
∴c2x=(2c+6)x2+9x,
2c+6=0
c2=9

解得c=-3;
∴f(x)=
-3x
2x+3
=-
3x
2x+3
点评:本题考查了求函数解析式的问题,解题的关键是表示出f[f(x)],利用函数恒等式列出方程组,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是(  )
A、
1
3
B、
2
3
C、
2
3
2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,又抛物线C2:x2=2py(p>0)通径所在直线被椭圆C1所截得的线段长为
4
3
33

(1)求椭圆C1和抛物线C2的方程;
(2)过点A的直线L与抛物线C2交于B、C两点,抛物线C2在点B、C处的切线分别为l1、l2,且l1与l2交于点P.是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标),若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,对人体健康和大气环境质量的影响很大.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从360天的市区PM2.5监测数据中,随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)从这15天的数据中任取3天的数据,记ξ表示空气质量达到一级的天数,求ξ的分布列;
(2)以这15天的PM2.5日均值来估计这360天的空气质量情况,则其中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A,B,以OA,OB为邻边作一个平行四边形OAQB,记直线OQ与椭圆交于P点,且满足
|OQ|
|OP|
=λ(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点是(0,-
3
)和(0,
3
),并且经过点(
3
2
 ,  1)
,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F.
(Ⅰ)求椭圆C和抛物线E的标准方程;
(Ⅱ)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求
AG
HB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题:
①函数f(x)=(
x
)2
与g(x)=x表示的是同一个函数;
②若函数f(x)的定义域为[1,2],则函数f(x+1)的定义域为[2,3];
③若函数f(x)的值域是[1,2],则函数f(x+1)的值域为[2,3];
④若函数f(x)=x2+mx+1是偶函数,则函数f(x)的减区间为(-∞,0].
其中正确的命题有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2(ex+e-x)-(2x+1)2(e2x+1+e-2x-1),则满足f(x)>0的实数x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为R的圆C中,已知弦AB的长为5,则
AB
AC
=(  )
A、
5
2
B、
25
2
C、
5
2
R
D、
25
2
R

查看答案和解析>>

同步练习册答案