精英家教网 > 高中数学 > 题目详情
2.演绎推理“因为对数函数y=logax是增函数(大前提),而y=log${\;}_{\frac{1}{3}}$x是对数函数(小前提),所以y=log${\;}_{\frac{1}{3}}$x是增函数(结论)”所得结论错误的原因是(  )
A.大前提错B.小前提错
C.推理形式错D.大前提和小前提都错

分析 对于对数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,函数是一个减函数.故对数函数是增函数这个大前提是错误的,得到结论

解答 解:∵当a>1时,对数函数是一个增函数,
当0<a<1时,对数函数是一个减函数,
∴对数函数y=logax是增函数这个大前提是错误的,
从而导致结论错.
故选:A

点评 演绎推理的主要形式就是由大前提、小前提推出结论的三段论推理.三段论推理的依据用集合论的观点来讲就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论.演绎推理是一种必然性推理,演绎推理的前提与结论之间有蕴涵关系.因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的,但错误的前提可能导致错误的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求证:${C}_{n}^{n}$+${C}_{n+1}^{n}$+…+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$=${C}_{2n+1}^{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,2B=A+C.
(1)当AC=12时,求S△ABC的最大值;
(2)当S△ABC=4$\sqrt{3}$时,求△ABC周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人,吴老师采用A,B两种不同的数学方式对甲、乙两个班进行教学实验,为了解教学效果,期末考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下:(记成绩不低于90分者为“成绩优秀”).
(1Ⅰ)在乙班样本的20个个体中,从不低于80分的成绩中不放回地抽取2次,每次抽取1个,求在第1次抽取的成绩低于90分的前提下,第2次抽取的成绩仍低于90分的概率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“成绩优秀”与数学方式有关?
甲班乙班合计
优秀
不优秀
合计
独立性检验临界值表:
P(K2≥k)0.500.400.250.150.100.050.02501010 0.005 0.001 
k0.4550.7081.3232.0272.7063.8415.024 6.6357.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.y=cosx(x∈[0,π])与坐标轴所围成的图形的面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2+2(a-1)x+2在区间(-∞,-2)上单调递减,则a的取值范围是(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=3sin(2x+$\frac{π}{6}$).
(1)求f(0)的值;
(2)求f(x)在区间[-$\frac{π}{2}$,-$\frac{π}{12}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,-sin$\frac{C}{2}$),且$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$.
(1)求C;
(2)已知c=$\frac{7}{2}$,ab=6,求a+b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C上任意一点到它两焦点的距离之和为4.
(1)求椭圆C的标准方程;
(2)设0为原点.点A为圆C上一点,点B的坐标为(t,2),t∈R,且OA⊥OB,判断直线AB与圆x2+y2=2的位置关系,并证明.

查看答案和解析>>

同步练习册答案