精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)满足f(x-1)=2x+1,若f(a)=3a,则a=3.

分析 利用函数的解析式列出方程求解即可.

解答 解:函数f(x)满足f(x-1)=2x+1,f(a)=f(a+1-1)=3a,
可得2(a+1)+1=3a,解得a=3.
故答案为:3.

点评 本题考查函数的解析式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若f(cosx)=-1-2cos3x,求f(sinx).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有如下几个命题:
①函数$f(x)=3sin(2x-\frac{π}{6})+1$的一个对称轴为$x=\frac{π}{3}$;
②已知点A(2,-3),B(-3,-2),直线l:mx+y-m-1=0与线段AB相交,则直线l的斜率的范围是$[{-4,\frac{3}{4}}]$;
③若实数a+b=2,a,b为正数,则$\frac{1}{a}+\frac{4}{b}$的最小值为$\frac{9}{2}$;
④实数x,y满足3x+4y+6=0,则x2+y2+2x+4y+5的最小值为$\frac{4}{25}$;
⑤已知数列{an}的前n项和${S_n}={n^2}+3n-1$,则an=2n+1.
其中,所有正确的命题是①③.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为${S_n}={(n+1)^2}$,则a4+a5+a6=33.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,(角A,B,C的对应边分别为a,b,c),且$bsinA=\sqrt{3}acosB$.
(1)求角B的大小;
(2)若△ABC的面积是$\frac{{3\sqrt{3}}}{4}$,且a+c=5,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.集合A={lg2,lg5},B={a,b},若A=B,则$\frac{{a}^{2}+{b}^{2}-1}{{a}^{3}+{b}^{3}-1}$的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知sin2A=sin2B+sin2C,且sinA=2sinBcosC,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}中,a1+a6=33,a2a5=32,公比q>1,则S5=31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=lgx+2x-3的零点在区间(k,k+1)内(k∈Z),则k=1.

查看答案和解析>>

同步练习册答案