在空间四边形ABCD中,已知AD=1,BC=,且AD⊥BC,对角线BD=,AC=, AC和BD所成的角是( )
A. | B. | C. | D. |
C
解析试题分析:
分别取BC、AD、CD、BD、AB中点E、F、G、H、I,
连接EF、EG、EI、FG、FI、GH、GI、HI
∵△BCD中,GE是中位线,∴GE∥BD且GE=BD
同理可得FI∥BD且FI=BD
∴GE∥FI且GE=FI,得四边形EGFI是平行四边形
∵FG∥AC,GE∥BD
∴∠FGE(或其补角)是异面直线AC和BD所成的角
同理可得∠GHI(或其补角)是异面直线AD和BC所成的角
∵AD⊥BC,∴∠GHI=90°
∵GH=BC= ,HI=AD=,∴GI=" GH2+HI2" =1
∵平行四边形EGFI中,FI=GE=BD= ,FG=EI=AC=
∴,得,解得EF=1
因此,,可得∠FGE=
∴异面直线AC和BD所成的角为
考点:异面直线及其所成的角.
点评:本题在空间四边形ABCD中,已知相对棱的长度和所成角,并且知道对角线长度的情况下求对角线
所成角大小,着重考查了空间四边形的性质和异面直线所成角求法等知识,属于中档题.
科目:高中数学 来源: 题型:单选题
在空间四边形ABCD中,在AB、BC、DC、DA上分别取E、F、G、H四点,如果GH、EF交于一点P,则 ( )
A.P一定在直线BD上
B.P一定在直线AC上
C.P在直线AC或BD上
D.P既不在直线BD上,也不在AC上
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①②③如果命题且_______,则为真命题,则可以在横线处填入的条件是( )
A.①或② | B.②或③ | C.①或③ | D.只有② |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,,则;
②若,,,,则;
③若,,则;
④若,,,,则其中真命
题的个数是 ( )))
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知直线 a和平面?,,∩=l,a,a,a在,内的射影分别为直线 b 和 c ,则 b 和 c 的位置关系是( )
A.相交或平行 | B.相交或异面 |
C.平行或异面 | D.相交﹑平行或异面 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
设是三个不重合的平面,l是直线,给出下列命题:
①若,则; ②若
③若l上存在两点到的距离相等,则; ④若
其中正确的命题是( )
A.①② | B.②③ | C.②④ | D.③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com