【题目】设复数z1=(a2-4sin2θ)+(1+2cos θ)i,a∈R,θ∈(0,π),z2在复平面内对应的点在第一象限,且z=-3+4i.
(1)求z2及|z2|.
(2)若z1=z2,求θ与a2的值.
科目:高中数学 来源: 题型:
【题目】执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为( )
A.0,0
B.1,1
C.0,1
D.1,0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下资料是一位销售经理收集到的每年销售额y(千元)和销售经验x(年)的关系:
销售经验x/年 | 1 | 3 | 4 | 4 | 6 | 8 | 10 | 10 | 11 | 13 |
年销售额y/千元 | 80 | 97 | 92 | 102 | 103 | 111 | 119 | 123 | 117 | 136 |
(1)依据这些数据画出散点图并作直线=78+4.2x,计算;
(2)依据这些数据求回归直线方程并据此计算;
(3)比较(1) (2)中的残差平方和的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里( )
A.156里
B.84里
C.66里
D.42里
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在常数,使得数列满足对一切恒成立,则称为“可控数列”.
(1) 若数列的通项公式为,试判断数列是否为“可控数列”?并说明理由;
(2) 若是首项为5的“可控数列”,且单调递减,问是否存在常数,使?若存在,求出的值;若不存在,请说明理由;
(3) 若“可控数列”的首项为2,,求不同取值的个数及最大值.(直接写出结果)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,若集合M={y|y= },N={x|y=lg },则(CUM)∩N=( )
A.(﹣3,2)
B.(﹣3,0)
C.(﹣∞,1)∪(4,+∞)
D.(﹣3,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,,斜边可以通过以直线为轴旋转得到,且二面角是直二面角,动点在斜边上.
(1)当D为AB的中点时,求异面直线AO与CD所成角的正切值;
(2)求CD与平面AOB所成角的正切值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com