精英家教网 > 高中数学 > 题目详情

已知函数的导数为

(1)若曲线在点(1,)处的切线斜率为3,且x=有极值,

求函数的解析式

(2)若方程=m有三个根,求m的取值范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=
x2-2
(x≥2)
的导数为g′(x)=
x
x2-2
(x≥2)
,记函数f(x)=x-kg(x)(x≥2,k为常数).
(1)若函数f(x)在区间(2,+∞)上为减函数,求k的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+5,记f(x)的导数为f′(x).
(I)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=
2
3
时,y=f(x)有极值,求函数f(x)的解析式;
(II)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值;
(III)若关于x的方程f’(x)=0的两个实数根为α、β,且1<α<β<2试问:是否存在正整数n0,使得|f′(n0)|≤
3
4
?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,记f(x)的导数为f′(x).
(1)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=
23
时,y=f(x)有极值,求函数f(x)的解析式;
(2)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省杭州市建德市新安江中学高三(上)期中数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=x3+ax2+bx+5,记f(x)的导数为f′(x).
(1)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=时,y=f(x)有极值,求函数f(x)的解析式;
(2)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

同步练习册答案