精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)曲线轴于两点,且点 为直线上的动点,求周长的最小值.

【答案】(Ⅰ) ;Ⅱ).

【解析】试题分析:(Ⅰ)由极直互化公式可得直线的直角坐标方程为, 消去参数

得C得普通方程为

(Ⅱ)求点A关于直线l的对称点为Mab),由题易知当PMB与直线l的交点时周长最小.

试题解析:(Ⅰ)由直线的极坐标方程,得

,直线的直角坐标方程为

由曲线C的参数方程得C得普通方程为

(Ⅱ)由(Ⅰ)知曲线C表示圆心,半径的圆,令

A的坐标为B的坐标为

A关于直线l的对称点为Mab),则有

解得,即点M(1,3

由题易知当PMB与直线l的交点时周长最小,最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中, 是平行四边形, 是矩形, .

(Ⅰ)求证:平面平面

(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数,且f(2)=
(1)求实数m和n的值;
(2)判断函数f(x)在(﹣∞,0)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求函数的极值;

(Ⅱ)若 ,使得),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数在(0,+∞)上单调递增的是(
A.
B.y=(x﹣1)2
C.y=21x
D.y=lg(x+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷份, 名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).

(1)要从这名中小学中用分层抽样的方法抽取名中小学生进一步调查,则在(小时)时间段内应抽出的人数是多少?

(2)若希望的中小学生每天使用互联网时间不少于(小时),请估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=4n,数列{bn}满足b1=-3,

bn1bn+(2n-3)(n∈N*).

(1)求数列{an}的通项公式;

(2)求数列{bn}的通项公式;

(3)cn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为

(Ⅰ)求直线l以及曲线C的极坐标方程;

(Ⅱ)设直线l与曲线C交于A,B两点,求PAB的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e1+|x| ,则使得f(x)>f(2x﹣1)成立的x的取值范围是( )
A.
B.
C.(﹣
D.

查看答案和解析>>

同步练习册答案