精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在实数集R上的奇函数,当x>0时,f(x)=-1+log2x.
(1)求当x<0时,求f(x)的表达式;
(2)画出函数f(x)的图象,并根据图象写出函数的单调区间(不要求证明).
分析:(1)设x<0,则-x>0,再由当x>0时,f(x)=log2x-1求得f(-x)然后利用函数f(x)是奇函数得到f(x).
(2)直接由图象的变换规律可得x>0时对应的图象;再结合奇函数的图象关于原点对称,得到x<0时对应的图象即可;结合图象可得其单调区间
解答:解:(1)设x<0,则-x>0
∵当x>0时,f(x)=log2x-1
∴f(-x)=log2(-x)-1,
又∵函数f(x)是奇函数
∴f(x)=-f(-x)=1-log2(-x).
(2):先画出函数y=log2x的图象,再整体向下平移一个单位可得x>0时对应的图象;
再结合奇函数的图象关于原点对称,得到x<0时对应的图象即可.
如图:
结合图象可得:其单调递增区间为:(-∞,0),(0,+∞).
点评:本题主要考查用奇偶性来求对称区间上的解析式,一定要注意,求哪一个区间的解析式,要在哪个区间上取变量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案
鍏� 闂�