精英家教网 > 高中数学 > 题目详情

正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.

(1) an=2n   (2) Tn=

解析解:(1)已知an与n的关系式,求an,这一类题目应把式子进行变形,得an=f(n),从而求出通项公式.
-(2n-1)an-2n=0,
得(an-2n)(an+1)=0.
故an=-1(因数列为正项数列,舍去)或an=2n.
(2)因bn==(-),
所以Tn=b1+b2+b3+…+bn
=(-)+(-)+(-)+…+(-)
=(-+-+-+…+-)
=(1-)
=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等比数列中,已知
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列,其前项和满足的等比中项..
(1)求数列的通项公式;
(2)设,求数列的前99项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的前n项和为Sn,且S4=-62,S6=-75,求:
(1){an}的通项公式an及其前n项和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=8,a4=2,且满足an+2+an=2an+1.
(1)求数列{an}的通项公式;
(2)设Sn是数列{|an|}的前n项和,求Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的首项为a,公差为d,且方程ax2-3x+2=0的解为1,d.
(1)求{an}的通项公式及前n项和公式;
(2)求数列{3n-1an}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1a3成等比数列,求a1
(2)若S5a1a9,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题.若某地区2012年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2013年开始到2022年每年人口比上年增加万人,从2023年开始到2032年每年人口为上一年的99%.
(1)求实施新政策后第年的人口总数的表达式(注:2013年为第一年);
(2)若新政策实施后的2013年到2032年人口平均值超过49万,则需调整政策,否则继续实施.问到2032年后是否需要调整政策?

查看答案和解析>>

同步练习册答案