精英家教网 > 高中数学 > 题目详情
(2007•深圳二模)把正奇数数列{2n-1}的各项从小到大依次排成如下三角形状数表记M(s,t)表示该表中第s行的第t个数,则表中的奇数2007对应于.(  )
分析:先算出2007在正奇数数列{2n-1}中是第几项,即n=1004,再利用数列1,2,3…的前n项和公式算出1004在第几行,第几个数即可
解答:解:∵2007=2×1004-1
∴2007在正奇数数列{2n-1}中是第1004项
又∵S=1+2+3+…+n=
n(n+1)
2

当n=44时,S=990∴第44行最后一个数是正奇数数列{2n-1}中的第990项
∵第45行共有45个数
∴正奇数数列{2n-1}中的第1004项在第45行第14个数
故选A
点评:本题考查了观察法求数列的通项公式,等差数列的前n项和公式,解题时要准确把握规律,明晰思路
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•深圳二模)如图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1,若把它推广到长方体ABCD-A1B1C1D1中,试写出相应命题形式:
长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)已知集合M={-1,0},则满足M∪N={-1,0,1}的集合N的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)已知双曲线
x2
a2
-
y2
b2
=1
的两条渐近线互相垂直,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为(  )

查看答案和解析>>

同步练习册答案