【题目】如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且,则下列说法正确的是________.(填写所有正确说法的序号)
①EF与GH平行; ②EF与GH异面;
③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;
④EF与GH的交点M一定在直线AC上.
科目:高中数学 来源: 题型:
【题目】已知动点到定点的距离和它到直线的距离的比值为常数,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与曲线相交于不同的两点, ,直线与曲线相交于不同的两点 ,且,求以, , , 为顶点的凸四边形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,若 =(1,sinA)与 =(2,sinB)共线,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.
(1)求抛物线的标准方程;
(2)若不经过坐标原点的直线与抛物线相交于不同的两点, ,且满足,证明直线过轴上一定点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.
(1)请写出程序框图所表示的函数表达式;
(2)求输出的y(y<5)的概率;
(3)求输出的y(6<y≤8)的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com