精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx-a-ab(a≠0),当x∈(-1,3)时,f(x)>0;当x∈(-∞,-1)∪(3,+∞)时,f(x)<0.
(1)求f(x)在(-1,2)内的值域;
(2)若方程f(x)=c在[0,3]有两个不等实根,求c的取值范围.
考点:二次函数在闭区间上的最值,函数的值域,函数的零点与方程根的关系
专题:函数的性质及应用
分析:(1)由题意,-1,3是方程ax2+bx-a-ab=0的两根,求得得a和b的值,可得二次函数f(x)的解析式,从而求得f(x) 在(-1,2)内的值域.
(2)由题意可得x2-2x+c-3=0,在[0,3]有两个不等实根,设g(x)=x2-2x+c-3,则
g(1)<0
g(0)≥0
g(3)≥0
,由此解得c的范围.
解答: 解:(1)由题意,-1,3是方程ax2+bx-a-ab=0的两根,可得a=-1,b=2,
则f(x)=-x2+2x+3=-(x-1)2+4 在(-1,2)内的值域为(0,4].
(2)方程-x2+2x+3=c,即x2-2x+c-3=0,在[0,3]有两个不等实根,
设g(x)=x2-2x+c-3,则
g(1)<0
g(0)≥0
g(3)≥0
,解得3≤c<4.
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了转化的数学思想,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线l的极坐标方程为θ=
π
3
(ρ∈R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α为参数),求直线l与曲线C的交点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证(a>0,a≠1):
(1)loga(n2+n+1)+loga(n-1)=loga(n3-1)(n>1);
(2)loga(bs+b-s+2)+loga(bs+b-s-2)=2loga(bs-b-s)(b>1,s>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)恒成立;
②当x∈(0,5)时,2x≤f(x)≤4|x-1|+2恒成立.
(1)求f(1)的值;
(2)求f(x)的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤2x成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线E:ρsin2θ=2cosθ,过点A(5,α)(α为锐角且tanα=
3
4
)作平行于θ=
π
4
(ρ∈R)的直线l,且l与曲线E分别交于B,C两点.
(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线E与直线l的普通方程;
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β∈(0,π),则α+β=
π
2
是sinα=cosβ的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x-y+1≥0
x+y-2≤0
y≥0
,所表示的平面区域面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“ab≠0”是“a2+b2≠0”的 (  )
A、充分非必要条件
B、必要非充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案