精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱台中,上底面边长为4,下底面边长为8,高为5,点分别在上,且.过点的平面与此四棱台的下底面会相交,则平面与四棱台的面的交线所围成图形的面积的最大值为

A. B. C. D.

【答案】B

【解析】

由题意可知,当平面α经过BCNM时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积。

当斜面α经过点时与四棱台的面的交线围成的图形的面积最大,此时α为等腰梯形,上底为MN=4,下底为BC=8

此时作正四棱台俯视图如下:

MN中点在底面的投影到BC的距离为8-2-1=5

因为正四棱台的高为5,所以截面等腰梯形的高为

所以截面面积的最大值为

所以选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数与偶函数均为定义在上的函数,并满足

1)求的解析式;

2)设函数

①判断的单调性,并用定义证明;

②若,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为为曲线上的动点,轴、轴的正半轴分别交于两点.

(1)求线段中点的轨迹的参数方程;

(2)若是(1)中点的轨迹上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为抛物线外一点,过点作抛物线的两条切线,切点分别为

(Ⅰ)若点,求直线的方程;

(Ⅱ)若点为圆上的点,记两切线的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 为参数)和定点 是此圆锥曲线的左、右焦点.

(1)以原点为极点,以轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;

(2)经过且与直线垂直的直线交此圆锥曲线 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,选项正确的是(

A. 在回归直线中,变量时,变量的值一定是15

B. 两个变量相关性越强,则相关系数就越接近于1

C. 在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关

D. 若某商品的销售量(件)与销售价格(元/件)存在线性回归方程为,当销售价格为10元时,销售量为100件左右

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当b=4时,求的极值;

(2)若在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人组成星队参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则星队3分;如果只有一个人猜对,则星队1分;如果两人都没猜对,则星队0分。已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响。各轮结果亦互不影响。假设星队参加两轮活动,求:

星队至少猜对3个成语的概率;

星队两轮得分之和为X的分布列和数学期望EX

查看答案和解析>>

同步练习册答案