精英家教网 > 高中数学 > 题目详情
20.若$\underset{lim}{n→∞}$g(x)=0,且在x0的某去心邻域内g(x)≠0,$\underset{lim}{n→∞}$$\frac{f(x)}{g(x)}$=A,则$\underset{lim}{n→∞}$f(x)必等于0,为什么?

分析 利用极限的运算性质及反证法计算即得结论.

解答 解:假设$\underset{lim}{n→∞}$f(x)=B≠0,
∵$\underset{lim}{n→∞}$g(x)=0,
∴$\underset{lim}{n→∞}$$\frac{f(x)}{g(x)}$=$\frac{\underset{lim}{n→∞}f(x)}{\underset{lim}{n→∞}g(x)}$=$\frac{B}{0}$无意义,
∴$\underset{lim}{n→∞}$f(x)必等于0.

点评 本题考查极限及其运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.判断下列函数的奇偶性:
(1)f(x)=$\frac{(1+{2}^{x})^{2}}{{2}^{x}}$;
(2)f(x)=lg(x+$\sqrt{{x}^{2}+1}$);
(3)f(x)=lgx2+lg$\frac{1}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知随机变量X服从正态分布N(3,1),且P(X>4)=0.1587,则P(2≤X≤4)等于(  )
A.0.3413B.0.1585C.0.8413D.0.6826

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.记函数f(n)=1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$(n∈N+),求证:当n为偶数时,方程fn(x)=0没有实数根;当n为奇数时,方程fn(x)=0有唯一实数根xn,且xn+2<xn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:
(1)$\frac{sin(180°-α)sin(270°-α)tan(90°-α)}{sin(90°+α)tan(270°+α)tan(360°-α)}$;
(2)1+sin(α-2π)•sin(π+α)-2cos2(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3}且A≠B,求实数a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义运算“*”如下:x*y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函数f(x)=(1-2x)*(2x-3),则f(x)等于(  )
A.$\left\{\begin{array}{l}1-{2}^{x},x≤1\\{2}^{x}-3,x>1\end{array}\right.$B.$\left\{\begin{array}{l}{{2}^{x}-3,x<1}\\{1-{2}^{x},x≥1}\end{array}\right.$
C.$\left\{\begin{array}{l}{{2}^{x}-4,x≥1}\\{2-{2}^{x},x<1}\end{array}\right.$D.$\left\{\begin{array}{l}{{4}^{x}-3,x<1}\\{1-{4}^{x},x≥1}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1-{x}^{2}}{1+{x}^{2}}$.
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性;
(3)求证:f($\frac{1}{x}$)=-f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的通项公式an=3n+1,
(1)求证:数列{an}是等差数列.
(2)若bn=pan+q(p,q为常数),求证:{bn}也是等差数列.

查看答案和解析>>

同步练习册答案