精英家教网 > 高中数学 > 题目详情

已知直线L:与圆C:
(1) 若直线L与圆相切,求m的值。
(2) 若,求圆C 截直线L所得的弦长。

(1)  (2)

解析试题分析:本题第(1)问,由于直线与圆相切,则圆心到直线的距离等于圆的半径,即有,只要解出m即可;第(2)问,先求出圆心到直线的距离,由于原的半径为1,则由勾股定理可求出弦长。
解:(1)直线与圆相切,圆心到直线的距离
,解得 
时,直线的方程为,圆心到直线的距离
弦长
考点:直线与圆的位置关系.
点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,以及点到直线的距离公式,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练运用此性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为.

(Ⅰ)求证:三点共线;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(1)证明:不论取什么实数,直线与圆恒交于两点;
(2)求直线被圆截得的弦长最小时的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点M到定点与到定点的距离之比为3.
(Ⅰ)求动点M的轨迹C的方程,并指明曲线C的轨迹;
(Ⅱ)设直线,若曲线C上恰有两个点到直线的距离为1,
求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中,圆的参数方程为为参数),以为极轴建立极坐标系,直线的极坐标方程为.
⑴写出直线的直角坐标方程和圆的普通方程;
⑵求圆截直线所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足以下三个条件:(1)圆心在直线上,(2)与直线相切,(3)截直线所得弦长为6。求圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心为原点,且与直线相切。

(1)求圆的方程;
(2)过点(8,6)引圆O的两条切线,切点为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2).

(1)求以OB为直径的圆C的极坐标方程,然后化成直角方程;
(2)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.

查看答案和解析>>

同步练习册答案