精英家教网 > 高中数学 > 题目详情
12.正方体ABCD-A1B1C1D1中直线BC1与平面BB1D1D所成角的余弦值是$\frac{\sqrt{3}}{2}$.

分析 以D为原点,AD为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线BC1与平面BB1D1D所成角的余弦值.

解答 解:以D为原点,AD为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为1,
则B(1,1,0),C1(0,1,1),D(0,0,0),D1(0,0,1),
$\overrightarrow{B{C}_{1}}$=(-1,0,1),$\overrightarrow{D{D}_{1}}$=(0,0,1),$\overrightarrow{DB}$=(1,1,0),
设平面BB1D1D的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{D}_{1}}=z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0),
设直线BC1与平面BB1D1D所成角为θ,
则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{B{C}_{1}}|}{|\overrightarrow{n}|•|\overrightarrow{B{C}_{1}}|}$=$\frac{1}{\sqrt{2}•\sqrt{2}}$=$\frac{1}{2}$,
∴cosθ=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴直线BC1与平面BB1D1D所成角的余弦值为$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查线面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图在直角梯形ABCD中AB=2AD=2DC,E为BC边上一点,$\overrightarrow{BC}=3\overrightarrow{EC}$,F为AE的中点,则$\overrightarrow{BF}$=(  )
A.$\frac{1}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AD}$B.$\frac{2}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}$C.$-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$D.$-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0,若函数f(x)在区间(-2,0)内恰有两个零点,则a的取值范围是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABCF.在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{3}}{2}$,2)D.($\frac{\sqrt{3}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,∠BAC=90°,AD⊥BC,垂足为D.若BC=m,∠B=α,则AD长为(  )
A.msin2αB.mcos2αC.msinαcosαD.msinαtanα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F是双曲线$\frac{x^2}{{3{a^2}}}-\frac{y^2}{a^2}=1({a>0})$的右焦点,O为坐标原点,设P是双曲线上的一点,则∠POF的大小不可能是(  )
A.165°B.60°C.25°D.15°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=x3-6ax+3a在(0,1)内有极小值,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,一个半径为10m的摩天轮,轮子的底部在地面上2m处,如果此摩天轮按逆时针方向转动,每30s转一圈,且当摩天轮上某人经过点P处(∠POA=30°)时开始计时.
(1)求此人相对于地面的高度h(m)关于时间t(s)的函数关系式;
(2)在摩天轮转动一圈内,约有多长时间此人相对于地面的高度不小于17m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)为R上的奇函数,且当x>0时,f(x)=x3-1,则f(1-x)>0的解集为(  )
A.(-∞,0)∪(1,2)B.(-1,0)∪(1,+∞)C.(0,1)∪(2,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

同步练习册答案