精英家教网 > 高中数学 > 题目详情

【题目】在平面内将点A(2,1)绕原点按逆时针方向旋转 ,得到点B,则点B的坐标为

【答案】(﹣ ,
【解析】解:如图,作AC⊥x轴于C点,BD⊥x轴于D点,

∵点A的坐标为(2,1),

∴AC=1,OC=2,

∴OA= =

∴sin∠AOC= ,cos∠AOC=

∵OA绕原点按逆时针方向旋转 得OB,

∴∠AOB= ,OA=OB=

∴∠BOC=∠AOC+

∴sin∠BOC=sin(∠AOC+ )=sin∠AOCcos +cos∠AOCsin = ×(﹣ )+ × =

cos∠BOC=cos(∠AOC+ )=cos∠AOCcos ﹣sin∠AOCsin = ×(﹣ )﹣ × =﹣

∴DB=OBsin∠BOC= × = ,OD=OBcos∠BOC= ×(﹣ )=﹣

∴B点坐标为:(﹣ ).

所以答案是:(﹣ ).

【考点精析】利用两角和与差的余弦公式对题目进行判断即可得到答案,需要熟知两角和与差的余弦公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是直线,是平面,给出下列命题:①若,则;②若,则;③若内不共线的三点到的距离都相等,则;④若,且,则;⑤若为异面直线,,则。则其中正确的命题是_______.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>D)的离心率为 ,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有 = + 成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R, ,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数x,y满足不等式组 ,则z=2|x|+y的最大植为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为(
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( ) ①对任意实数a,b,函数y=f(x)在R上是单调函数;
②对任意实数a,b,函数y=f(x)在R上都不是单调函数;
③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;
④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.
A.①③
B.②③
C.①④
D.③④

查看答案和解析>>

同步练习册答案