精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的首项为a,公差为d,且方程ax2-3x+2=0的解为1,d.
(1)求{an}的通项公式及前n项和公式;
(2)求数列{3n-1an}的前n项和Tn.

(1) an=2n-1   Sn=n2  (2) Tn=1+(n-1)·3n

解析解:(1)方程ax2-3x+2=0的两根为1,d.
所以a=1,d=2.
由此知an=1+2(n-1)=2n-1,前n项和Sn=n2.
(2)令bn=3n-1an=(2n-1)·3n-1,
则Tn=b1+b2+b3+…+bn=1·1+3·3+5·32+…+(2n-1)·3n-1,
3Tn=1·3+3·32+5·32+…+(2n-3)·3n-1+(2n-1)·3n,
两式相减,得-2Tn=1+2·3+2·32+…+2·3n-1-(2n-1)·3n=1+-(2n-1)·3n=-2-2(n-1)·3n.
∴Tn=1+(n-1)·3n.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为公差不为零的等差数列,首项的部分项恰为等比数列,且.
(1)求数列的通项公式(用表示);
(2)若数列的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.
(1)求a及k的值;
(2)设数列{bn}的通项bn,证明数列{bn}是等差数列,并求其前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式.
(2)求数列{}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值.
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知单调递增的等比数列{an}满足:
a2a3a4=28,且a3+2是a2a4的等差中项.
(1)求数列{an}的通项公式an
(2)令bnanloganSnb1b2+…+bn,求使Snn·2n+1>50成立的最小的正整数n.

查看答案和解析>>

同步练习册答案