精英家教网 > 高中数学 > 题目详情

【题目】为保障公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1千米处不能收到手机信号,如图,检查员抽查某市一考点,以考点正西千米的处开始为检查起点,沿着一条北偏东方向的公路,以每小时12千米的速度行驶,并用手机接通电话,问从起点开始计时,最长经过多少分钟检查员开始收不到信号(点开始),并至少持续多长时间(之间)该考点才算检查合格?

【答案】最长经过5分钟检查员开始收不到信号,并持续至少5分钟才算检查合格

【解析】

根据题意,在中通过正弦定理求得,进而,得到.得出为等边三角形

设检查员行驶到公路上两点之间时收不到信号,

即公路上两点到考点的距离为1千米.

中,千米,千米,

由正弦定理,得

不合题意),

.

中,千米,

为等边三角形,千米.

上需5分钟,上需5分钟.

最长经过5分钟检查员开始收不到信号,并持续至少5分钟才算检查合格.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面ABC,,E是BC的中点,

求异面直线AE与所成的角的大小;

若G为中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①若直线,那么直线必平行于平面内的无数条直线;②一个长为,宽为的矩形,其直观图的面积为;③若函数的定义域是,则的定义域是;④定义在上的函数,若,则函数的图象关于点中心对称.其中所有正确命题的编号为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是各项均为正数的等比数列,且a1a2=6,a1a2a3.

(1)求数列{an}的通项公式;

(2){bn}为各项非零的等差数列,其前n项和为Sn.已知S2n+1bnbn+1,求数列{}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在办公大厅建一面长为米的玻璃幕墙.先等距安装根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为米的玻璃造价为元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为元(总造价=立柱造价+玻璃造价).

(1)求关于的函数关系式;

(2)当时,怎样设计能使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,平行四边形的周长为8,其对角线的端点.

(1)求动点的轨迹的方程;

(2)已知点,记直线与曲线的另一交点为,直线分别与直线交于点.证明:以线段为直径的圆恒过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,已知.

(1)求角

(2)求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)指出的周期、振幅、初相、对称轴并写出该函数的单调增区间;

2)说明此函数图象可由上的图象经怎样的变换得到.

查看答案和解析>>

同步练习册答案