精英家教网 > 高中数学 > 题目详情

【题目】已知如图,直线是抛物线)和圆C的公切线,切点(在第一象限)分别为PQ.F为抛物线的焦点,切线交抛物线的准线于A,且.

1)求切线的方程;

2)求抛物线的方程.

【答案】12

【解析】

1)根据抛物线定义得,再由可得切线的斜率,再根据圆的性质可得切点坐标,从而得到切线的方程.

2)设切点,利用导数的几何意义得出在点的切线方程再根据(1)可求得,代入抛物线,即可求得,从而求得抛物线的方程.

1)如图,过P准线于H.

,知,则.

.

设切点,又,则

由①②解得,则.

∴切线的方程为,即.

2)由抛物线方程,求导数得

设切点,则.

所以点P处切线方程为,即.

由(1)可知切线方程为

,则

代入,得,则

∴抛物线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆锥的轴截面为等腰为底面圆周上一点。

(1)若的中点为,求证: 平面

(2)如果,求此圆锥的体积;

(3)若二面角大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面ABCDE分别是的中点.

(Ⅰ)求证:

(Ⅱ)求二面角的大小;

(Ⅲ)线段上是否存在点F,使平面?若存在,求的值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线处的切线方程;

2)求函数的单调区间;

3)若函数在区间内有且只有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为为坐标原点,点到直线的距离为为等腰直角三角形.

(1)求椭圆的标准方程;

(2)直线与椭圆交于两点,若直线与直线的斜率之和为,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):

分组

频数

9

23

40

22

6

规定:实心球投掷距离在之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值,将频率视为概率.

(1)求,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.

(2)现在从实心球投掷距离在之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以261826铜的成绩列金牌榜第三奖牌榜第二.某校体育爱好者在高三年级一班至六班进行了本届奥运会中国队表现的满意度调查(结果只有满意不满意两种),从被调查的学生中随机抽取了60人,具体的调查结果如下表:

班号

一班

二班

三班

四班

五班

六班

频数

6

10

13

11

9

11

满意人数

5

9

10

6

7

7

1)在高三年级全体学生中随机抽取1名学生,由以上统计数据估计该生持满意态度的概率;

2)若从一班和二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对本届奥运会中国队表现不满意的人数为,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案