精英家教网 > 高中数学 > 题目详情
2.已知数列{an}满足a1=2,an+1=an2,则数列{an}的通项公式为 an=${2}^{{2}^{n-1}}$.

分析 an+1=an2,可得lgan+1=2lgan,再利用等比数列的通项公式即可得出.

解答 解:∵an+1=an2
∴lgan+1=2lgan
∴数列{lgan}是等比数列,首项lg2,公比为2.
∴lgan=2n-1lg2,
∴an=${2}^{{2}^{n-1}}$.
故答案为:${2}^{{2}^{n-1}}$.

点评 本题考查了等比数列的通项公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3cm,高为3cm,画出这个正六棱锥的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:关于x的方程log2(ax2-2x+2)=2在[1,2]内有解;命题q:函数f(x)=m(x2-1)+x-a的图象与x轴有交点.
(1)若p是真命题.求实数a的取值范围;
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={x|x=2t2+4t+1},B={y|y=-3x2+6x+10},则A∩B=[-1,13].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3+bx2+cx+d的图象如图所示,则函数y=log${\;}_{\frac{1}{2}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的单调减区间为(  )
A.($\frac{1}{2}$,+∞)B.(3,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)$\left\{\begin{array}{l}{x-2,x≥2}\\{\frac{1}{2}x-1,x<2}\end{array}\right.$的图象与函数f(x)=log3x的图象的交点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不等式x+lnx≤kx+b≤x2对?x∈(0,+∞)恒成立,则k+3b的值-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sinα=-$\frac{\sqrt{3}}{2}$,α∈[-$\frac{π}{2}$,$\frac{π}{2}$],则α=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\underset{lim}{n→∞}$[2-($\frac{r}{r+1}$)n]=2,则实数r的取值范围是(-$\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案