精英家教网 > 高中数学 > 题目详情

(13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合。
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A,B两点
(i)若直线l的斜率为1,求AB的长;
(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程,如果不存在,说明理由。

解:(1)y2=4x;(2)(i)|AB|=
(ii)存在直线m:x=3满足题意。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知焦点在坐标轴上的双曲线,它的两条渐近线方程为,焦点到渐近线的距离为,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O:轴于AB两点,曲线C是以为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q

(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知椭圆经过点,其离心率为.
(1) 求椭圆的方程;
(2)设直线与椭圆相交于两点,以线段为邻边作平行四边形,其中顶点在椭圆上,为坐标原点.求到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知:椭圆的左右焦点为;直线经过交椭圆于两点.
(1)求证:的周长为定值.
(2)求的面积的最大值?

查看答案和解析>>

同步练习册答案