【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,又函数.
(1)求函数的单调减区间;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,又,且锐角C满足,若sinB=2sinA,求a+b的值.
【答案】(1);(2)3
【解析】
(1)由函数f(x)的部分图象可得A,可求函数的周期,利用正弦函数的周期公式可求ω的值,又函数图象过点,结合范围0<φ<π,可求,可得f(x),g(x)的解析式,进而利用余弦函数的图象和性质可求其单调减区间.
(2)由,得cos2C,结合范围0,可求C的值,由正弦定理得,由余弦定理得3=a2+b2﹣ab,即可解得a,b的值,从而得解.
解:(1)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象可得A=2,
由于,即T=π,
则,
又函数图象过点,
则,
即,
又0<φ<π,
即,
即,
则,
由2kπ≤2x≤2kπ+π,k∈Z,得kπ≤x≤kπ,k∈Z,
所以函数g(x)的单调减区间为[kπ,kπ],k∈Z.
(2)由,得cos2C,
因为0,
所以0<2C<π,
所以2C,可得,
又sinB=2sinA,由正弦定理得,①
由余弦定理,得,可得:,②.
由①②:,解得a=1,b=2,
所以a+b=3.
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为平行四边形,,平面,,,,且是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在一点,使得与所成的角为? 若存在,求出的长度;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是一门以不规则几何形态为研究对象的几何学,分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点C、D,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图二中的最上方的线段作相同的操作,得到图3中的图形;依次类推,我们就得到了以下一系列图形;
记第n个图形(图1为第1个图形)中的所有线段长的和为,若对任意的正整数n,都有.则正数a的最大值为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间,9:40~10:00记作,10:00~10:20记作,10:20~10:40记作.例如:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;
(3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
参考数据:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中为自然对数的底数.
(1)求不等式的解集;
(2)若函数有两个极值点,()(若是函数的极大值或极小值,则m为函数的极值点,极大值点与极小值点统称为极值点).
①求a的取值范围;
②证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.
(1)点M(x,y)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;
(2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为E,F,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,,,E,F分别为AD,AB中点,M为线段BC上的一个动点,现将,,分别沿EC,EF折起,使A,D重合于点P.设PM与平面BCEF所成角为,二面角的平面角为,二面角的平面角为,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线l:(m为常数).
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,当|AB|=4时,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com