精英家教网 > 高中数学 > 题目详情

【题目】函数fx)=Asinωx)(A0,ω0,0φπ)的部分图象如图所示,又函数.

1)求函数的单调减区间;

2)设△ABC的内角A,B,C的对边分别为a,b,c,又,且锐角C满足,若sinB2sinA,求a+b的值.

【答案】1;(23

【解析】

(1)由函数fx)的部分图象可得A,可求函数的周期,利用正弦函数的周期公式可求ω的值,又函数图象过点,结合范围0φπ,可求,可得fx),gx)的解析式,进而利用余弦函数的图象和性质可求其单调减区间.

(2),得cos2C,结合范围0,可求C的值,由正弦定理得,由余弦定理得3a2+b2ab,即可解得a,b的值,从而得解.

解:(1)由函数fx)=Asinωx)(A0,ω0,0φπ)的部分图象可得A2,

由于,即Tπ,

,

又函数图象过点,

,

,

0φπ,

,

,

,

2kπ≤2x≤2kπ+π,kZ,得kπ≤xkπ,kZ,

所以函数gx)的单调减区间为[kπ,kπ],kZ.

2)由,得cos2C,

因为0,

所以02Cπ,

所以2C,可得,

sinB2sinA,由正弦定理得,①

由余弦定理,得,可得:,②.

由①②:,解得a1,b2,

所以a+b3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为平行四边形,平面,且的中点.

)求证:平面

)求二面角的大小;

)在线段上是否存在一点,使得所成的角为 若存在,求出的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是一门以不规则几何形态为研究对象的几何学,分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点CD,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图二中的最上方的线段作相同的操作,得到图3中的图形;依次类推,我们就得到了以下一系列图形;

记第n个图形(图1为第1个图形)中的所有线段长的和为,若对任意的正整数n,都有.则正数a的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)求不等式的解集;

2)若函数有两个极值点()(若是函数的极大值或极小值,则m为函数的极值点,极大值点与极小值点统称为极值点).

①求a的取值范围;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.

1)点Mxy)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;

2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为EF,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,EF分别为ADAB中点,M为线段BC上的一个动点,现将,分别沿ECEF折起,使AD重合于点P.设PM与平面BCEF所成角为,二面角的平面角为,二面角的平面角为,则(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线lm为常数).

1)求曲线C的普通方程与直线l的直角坐标方程;

2)若直线l与曲线C相交于AB两点,当|AB|=4时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数fx)=exaex+2sinx满足,则zxlny的最小值是(

A.ln6B.2C.ln6D.2

查看答案和解析>>

同步练习册答案