精英家教网 > 高中数学 > 题目详情
6.为了解广州环亚化妆品科技有限公司员工的月工资水平,该单位800位员工中随机取了80位进行调查.得到如图所示的频率分别直方图.

试由如图估计该单位员工的月平均工资为44百元.

分析 利用频率分布直方图,求出平均数即可.

解答 解:根据频率分布直方图,得;
$\overline{x}$=$\frac{15+25}{2}$×0.01×10+$\frac{25+35}{2}$×0.02×10+$\frac{35+45}{2}$×0.02×10+$\frac{45+55}{2}$×0.03×10+$\frac{55+65}{2}$×0.01×10+$\frac{65+75}{2}$×0.01×10
=44;
估计该单位员工的月平均工资为44百元.
故答案为:44百.

点评 本题考查了利用频率分布直方图求平均数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={sin^2}x+2\sqrt{3}sinxcosx-{cos^2}x\;\;(x∈R)$.
(Ⅰ)求f(x)的最小正周期和在[0,π]上的单调递减区间;
(Ⅱ)若α为第四象限角,且$cosα=\frac{3}{5}$,求$f(\frac{α}{2}+\frac{7π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U=R,若集合A={x||x-1|>1},则∁UA=[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.二项式${(x-\frac{1}{x^2})^6}$展开式中x3系数的值是-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式x2-4<0的解集是(  )
A.{x|x<±2}B.{x|x>±2}C.{x|x<-2或x>2}D.{x|-2<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=Asin(ωx+ϕ)(A>0,ω>0,-\frac{π}{2}≤ϕ≤\frac{π}{2})$的图象如图,则y=f(x)的解析式为f(x)=4sin($\frac{9}{5}$x+$\frac{π}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上任意一点.
(1)当a=2,b=$\sqrt{3}$时,
①cos∠F1PF2的最小值是$\frac{1}{2}$;
②|PF1|•|PF2|的取值范围是[3,4];
③$|{\overrightarrow{P{F}_{1}}}^{2}|$+$|{\overrightarrow{P{F}_{2}}}^{2}|$的最小值是8.
(2)若满足|PF1|=2|PF2|,且∠F1PF2=$\frac{π}{3}$时,椭圆的离心率是$\frac{\sqrt{3}}{3}$;
(3)若满足|PF1|=2|PF2|时,椭圆离心率的取值范围是[$\frac{1}{3}$,1);
(4)若满足$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0时,椭圆的离心率的取值范围是[$\frac{\sqrt{2}}{2}$,1).
(5)过F2且垂直于x轴的直线与椭圆交于A,B两点,若△ABF1是锐角三角形,则椭圆的离心率的取值范围是($\sqrt{2}$-1,1);
(6)A,B是椭圆左、右顶点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2(k1k2≠0)时,若|k1|+|k2|的最小值为1,则椭圆离心率是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\frac{{2{{sin}^2}55°-1}}{sin20°}$的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若点 P(1,2),A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的不同的三个点,直线AP,BP的斜率分别是k1,k2,若k1+k2=0.
(1)求抛物线的方程;
(2)求y1+y2的值及直线AB的斜率k.

查看答案和解析>>

同步练习册答案