精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R),
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设mn<0,m+n>0,a>0,且函数f(x)为偶函数,判断F(m)+F(n)是否大于0?
解:(1)因为f(-1)=0,
所以a-b+1=0
因为f(x)的值域为[0,+∞),
所以
所以b2-4(b-1)=0
解得b=2,a=1
所以f(x)=(x+1)2
所以
(2)因为g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1
=
所以当时g(x)单调,
即k的取值范围是(-∞,-2]或[6,+∞)时,g(x)是单调函数。
(3)因为f(x)为偶函数,
所以f(x)=ax2+1
所以
因为mn<0,依条件设m>0,则n<0
又m+n>0
所以m>-n>0
所以|m|>|-n|
此时F(m)+F(n)=am2+1-an2-1=a(m2-n2)>0,
即F(m)+F(n)>0。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案