精英家教网 > 高中数学 > 题目详情
15.设${x^5}={a_0}+{a_1}(2-x)+{a_2}{(2-x)^2}+…+{a_5}{(2-x)^5}$,那么$\frac{{{a_0}+{a_2}+{a_4}}}{{{a_1}+a{\;}_3}}$的值为(  )
A.$-\frac{122}{121}$B.$-\frac{61}{60}$C.-$\frac{244}{241}$D.-1

分析 利用展开式,分别令x=1与3,两式相加可得结论.

解答 解:x=1时,1=a0+a1+a2+a3+a4+a5;x=3时,35=a0-a1+a2-a3+a4-a5
∴a0+a2+a4=122,a1+a3=-120,
∴$\frac{{{a_0}+{a_2}+{a_4}}}{{{a_1}+a{\;}_3}}$=-$\frac{61}{60}$,
故选:B.

点评 本题考查二项式的系数问题,考查赋值法的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.作出下列各角的正弦线,余弦线,正切线:
(1)$\frac{π}{3}$;
(2)$\frac{5π}{6}$;
(3)-$\frac{2π}{3}$;
(4)-$\frac{13π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列-7,-6,-5,…的前n项和Sn,则使得Sn最小的序号n的值是(  )
A.6B.7C.5或6D.7或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC中,角A、B、C的对边分别为a、b、c,a=$\sqrt{2}$,向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(cosBcosC,sinBsinC-$\frac{\sqrt{2}}{2}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求A的大小;
(Ⅱ)当sinB+cos($\frac{7π}{12}$-C)取得最大值时,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}、{bn},其中,${a_n}=\frac{1}{{2({1+2+3+…+n})}}$,数列{bn}满足b1=2,bn+1=2bn
(1)求数列{an}、{bn}的通项公式;
(2)是否存在自然数m,使得对于任意n∈N*,n≥2,有$1+\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}<\frac{m-8}{4}$恒成立?若存在,求出m的最小值;
(3)若数列{cn}满足${c_n}=\left\{{\begin{array}{l}{\frac{1}{{n{a_n}}},n为奇数}\\{{b_n},n为偶数}\end{array}}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:
(Ⅰ)已知a,b,c∈R,求证:a2+b2+c2≥ab+bc+ca
(Ⅱ)若a>0,b>0,且a+b=1,求证:$\frac{1}{a}$+$\frac{1}{b}$≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为$\sqrt{3}$,D为BC的中点,则三棱锥A-B1DC1的体积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以平面直角坐标系的原点为极点,正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A的极坐标为(2,$\frac{π}{6}$),直线l过点A且与极轴成角为$\frac{π}{3}$,圆C的极坐标方程为ρ=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ)写出直线l参数方程,并把圆C的方程化为直角坐标方程;
(Ⅱ) 设直线l与曲线圆C交于B、C两点,求|AB|•|AC|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y=4x+\frac{25}{x}(x>0)$的最小值为(  )
A.20B.30C.40D.50

查看答案和解析>>

同步练习册答案