在平面直角坐标系中,已知向量a=(x,y-),b=(kx,y+)(k∈R),a⊥b,动点M(x,y)的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当k=时,已知点B(0,-),是否存在直线l:y=x+m,使点B关于直线l的对称点落在轨迹T上?若存在,求出直线l的方程,若不存在,请说明理由.
(1)∵ a⊥b,
∴a·b=(x,y-)·(kx,y+)=0,
得kx2+y2-2=0,即kx2+y2=2,
当k=0时,方程表示两条与x轴平行的直线;
当k=1时,方程表示以原点为圆心,以为半径的圆;
当k>0且k≠1时,方程表示椭圆;
当k<0时,方程表示焦点在y轴上的双曲线.
(2)当k=时,动点M的轨迹T的方程为+=1,设满足条件的直线l存在,点B关于直线l的对称点为B′(x0,y0),则由轴对称的性质可得:
=-1,=+m,解得:
x0=--m,y0=m,
∵点B′(x0,y0)在轨迹T上,
∴+=1,
整理得3m2+2m-2=0,
解得m=或m=-,
∴直线l的方程为y=x+或y=x-,
经检验y=x+和y=x-都符合题意,
∴满足条件的直线l存在,其方程为y=x+或y=x-.
科目:高中数学 来源: 题型:
π | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com