精英家教网 > 高中数学 > 题目详情
(2013•济南二模)如图,斜三棱柱A1B1C1-ABC中,侧面AA1C1C⊥底面ABC,底面ABC是边长为2的等边三角形,侧面AA1C1C是菱形,∠A1AC=60°,E、F分别是A1C1、AB的中点.
求证:
(1)EC⊥平面ABC;
(2)求三棱锥A1-EFC的体积.
分析:(1)在平面AA1C1C内,作A1O⊥AC,O为垂足.易得四边形OCEA1为平行四边形,进而可得EC∥A1O,且EC=A1O.再由已知和面面垂直的性质可得所以A1O⊥底面ABC,进而可得结论;
(2)F到平面A1EC的距离等于B点到平面A1EC距离BO的一半,可得BO=
3
,所以VA1-EFC=VF-A1EC,代入数据计算可得.
解答:证明:(1)在平面AA1C1C内,作A1O⊥AC,O为垂足.
因为A1AC=600,所以AO=
1
2
AA1=
1
2
AC

即O为AC的中点,所以OC∥A1E,且OC=A1E…(3分)
可得四边形OCEA1为平行四边形,故EC∥A1O,且EC=A1O.
因为侧面AA&1C1C⊥底面ABC,交线为AC,A1O⊥AC,
所以A1O⊥底面ABC.所以EC⊥底面ABC.…(6分)
(2)F到平面A1EC的距离等于B点到平面A1EC距离BO的一半,而BO=
3
.…(8分)
所以VA1-EFC=VF-A1EC=
1
3
SA1EC
1
2
BO=
1
3
1
2
A1E•EC•
3
2
=
1
3
1
2
3
3
2
=
1
4
.…(12分)
点评:本题考查直线与平面垂直的判定,涉及三棱锥体积的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南二模)函数y=2sin(
π
2
-2x)
是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)对大于或等于2的自然数m的n次方幂有如下分解方式:
    22=1+3   23=3+5                    
  32=1+3+5   33=7+9+11                   
42=1+3+5+7  43=13+15+17+19                  
    52=1+3+5+7+9           53=21+23+25+27+29
根据上述分解规律,若m3(m∈N*)的分解中最小的数是73,则m的值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)若椭圆C1
x2
a12
+
y2
b12
=1
(a1>b1>0)和椭圆C2
x2
a22
+
y2
b22
=1
(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;
a1
a2
b1
b2

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)某学校周五安排有语文、数学、英语、物理、化学、体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课程表的不同排法种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南二模)已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
an3n

(1)证明数列{bn}是等差数列并求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案