精英家教网 > 高中数学 > 题目详情
已知向量a=(sinx•
3
),b=(cosx•si
n
2
 
x-
1
2
)
,函数f(x)=a•b.
(1)求f(x)单调递增区间;
(2)将函数f(x)图象按向量c=(m,0),得到函数y=g(x)的图象,且g(x)为偶函数,求正实数m的最小值.
分析:(1)由题意可将f(x)=
a
b
化为:f(x)=sin(2x-
π
3
),从而利用正弦函数的单调性质即可求得f(x)单调递增区间;
(2)由题意可求得g(x)=f(x-m)=sin(2x-2m-
π
3
),再结合g(x)为偶函数,可得到,-2m-
π
3
=kπ+
π
2
,(k∈Z),于是可得正实数m的最小值.
解答:解:(1)∵
a
=(sinx,
3
),
b
=(cosx,sin2x-
1
2
),
∴f(x)=
a
b
=sinxcosx+
3
(sin2x-
1
2

=
1
2
sin2x+
3
×
1-cos2x
2
-
3
2

=
1
2
sin2x-
3
2
cos2x
=sin(2x-
π
3
).
由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
(k∈Z)得:kπ-
π
12
≤x≤kπ+
12
,(k∈Z)
f(x)的单调递增区间为:[kπ-
π
12
,kπ+
12
],k∈Z.
(2)f(x)图象按向量
c
=(m,0),得到函数y=g(x)的图象,
则:g(x)=f(x-m)=sin[2(x-m)-
π
3
]=sin(2x-2m-
π
3
),
∵g(x)为偶函数,
∴-2m-
π
3
=kπ+
π
2
,(k∈Z)
∴当k=-1时,m最小.mmin=
π
12
点评:本题考查三角函数中的恒等变换应用,着重考查向量的数量积的坐标运算,向量的平移及函数的奇偶性的应用,综合性强,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案