精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=Asin(x+φ)(A>0,0<<4,|φ|< )过点(0, ),且当x= 时,函数f(x)取得最大值1.
(1)将函数f(x)的图象向右平移 个单位得到函数g(x),求函数g(x)的表达式;
(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于x1 , x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.

【答案】
(1)解:由题意A=1,将点(0, )代入解得

再根据 ,结合0<<4,

所以=2,

将函数f(x)的图象向右平移 个单位得到函数 的图象


(2)解:函数h(x)=f(x)+g(x)+2cos2x﹣1=2sin(2x+ ),故函数的周期T=π.

对于x1,x2∈R,都有h(x1)≤h(x)≤h(x2),故|x1﹣x2|的最小值为


【解析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,可得f(x)的解析式,再根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.(2)由条件利用正弦函数的最值以及周期性,求得|x1﹣x2|的最小值.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄”45岁为分界点,由以上统计数据完成下面 列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在 的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在 的概率.
参考数据如下:
附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的半焦距为 ,原点 到经过两点 的直线的距离为 .

(Ⅰ)求椭圆 的离心率;
(Ⅱ)如图, 是圆 的一条直径,若椭圆 经过 两点,求椭圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为R的奇函数f(x)满足f(1+x)=﹣f(x),则下列结论: ①f(x)的图象关于点 对称;
②f(x)的图象关于直线 对称;
③f(x)是周期函数,且2个它的一个周期;
④f(x)在区间(﹣1,1)上是单调函数.
其中正确结论的序号是 . (填上你认为所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b﹣2c)cosA=a﹣2acos2
(1)求角A的值;
(2)若a= ,则求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,
(Ⅰ)求函数f(x)在(-1,1)上的解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性;
(Ⅲ)当λ取何值时,方程f(x)=λ在(-1,1)上有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体P﹣ABC中,点M是棱PC的中点,点N是线段AB上一动点,且 ,设异面直线 NM 与 AC 所成角为α,当 时,则cosα的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知单位圆x2+y2=1与x轴正半轴交于点P,当圆上一动点Q从P出发沿逆时针方向旋转一周回到P点后停止运动设OQ扫过的扇形对应的圆心角为xrad,当0<x<2π时,设圆心O到直线PQ的距离为y,y与x的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式

(Ⅰ)写出程序框图中①②处的函数关系式;

(Ⅱ)若输出的y值为2,求点Q的坐标.

查看答案和解析>>

同步练习册答案