精英家教网 > 高中数学 > 题目详情
11.已知等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,且a1-a3=3,
(Ⅰ)求{an}的通项公式;
(Ⅱ)求Sn,并求满足Sn≤2的n的值.

分析 (I)设等比数列{an}的公比为q,由S1,S3,S2成等差数列,且a1-a3=3,可得2S3=S1+S2即$2{a}_{1}(1+q+{q}^{2})$=a1(2+q),${a}_{1}(1-{q}^{2})$=3,解出即可得出.
(II)利用等比数列的前n项和公式,并对n分类讨论即可得出.

解答 解:(I)设等比数列{an}的公比为q,∵S1,S3,S2成等差数列,且a1-a3=3,
∴2S3=S1+S2即$2{a}_{1}(1+q+{q}^{2})$=a1(2+q),${a}_{1}(1-{q}^{2})$=3,
解得a1=4,q=-$\frac{1}{2}$.
∴${a}_{n}=4×(-\frac{1}{2})^{n-1}$.
(II)Sn=$\frac{4[1-(-\frac{1}{2})^{n}]}{1-(-\frac{1}{2})}$=$\frac{8}{3}[1-(-\frac{1}{2})^{n}]$.,
当n为奇数时不满足,
当n为偶数时,Sn=$\frac{8}{3}[1-(-\frac{1}{2})^{n}]$=$\frac{8}{3}$$(1-\frac{1}{{2}^{n}})$≤2,
解得n=2.

点评 本题考查了等比数列与等差数列的通项公式及其的前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若关于x的方程2x2+(2-t)x+2=0的两个实根α,β满足0<α<1<β<2,则实数t的取值范围是6<t<7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且a-c=$\sqrt{3}$,那么椭圆的方程是$\frac{x^2}{12}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-ax}$在(-∞,1]是增函数,则a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知两定点A(-2,0),B(1,0),若动点P满足|PA|=2|PB|,则P的轨迹为(  )
A.直线B.线段C.D.半圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α∈(π,$\frac{3π}{2}$),其cosα=-$\frac{\sqrt{5}}{5}$,则tanα=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.平面内到两定点F1(-3,0)、F2(3,0)的距离之差的绝对值等于4的点M的轨迹(  )
A.椭圆B.线段C.两条射线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.图中.AE=$\frac{1}{4}$AC,且三角形CDE的面积是三角形ABC的一半,那么BD的长度是DC的几分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知n∈N*时点An(n,an)都在直线l上,点Bn(n,bn)都在函数y=2x上,a1=1,a2=3.
(1)求直线l的方程;
(2)若数列{Cn}满足Cn=$\left\{\begin{array}{l}{{a}_{n}\\;1≤n≤4}\\{{b}_{n}\\;n≥5}\end{array}\right.$,求数列{Cn}的前n项和Tn
(3)若点P1与A1重合,且$\overrightarrow{{P}_{n}{P}_{n+1}}$=(an,bn)(n∈N*),求点Pn的坐标.

查看答案和解析>>

同步练习册答案