(本小题满分13分)
设函数对任意的实数,都有,且当时,。
(1)若时,求的解析式;
(2)对于函数,试问:在它的图象上是否存在点,使得函数在点处的切线与平行。若存在,那么这样的点有几个;若不存在,说明理由。
(3)已知,且 ,记,求证: 。
解:(1);(2)满足题意的点有5个;(3) .
【解析】本试题主要考查了函数的解析式的求解,以及过点的切线方程的问题,和不等式的证明 的综合运用。
(1)第一问中将所求的变量转化为已知的区间,利用已知的关系式求解得到解析式。
(2)在第一问的基础上进一步得到函数的一般式,然后利用导数的思想,只要判定导函数为零,方程有无解即可。
(3)在第二问的得到函数的单调性,以及函数的最大值,然后结合函数的最值得到不等式,再结合等比数列的求和的思想得到。
解:(1)∵
设,则,∴。…………………2分
(2)设,则,
∴
∴,即为………4分
∵
∴问题转化为判断:关于的方程在,内是否解,即在,内是否有解,……………………6分
令
函数 的图象是开口向上的抛物线,其对称轴是直线,
判别式,
且,,
当时,∵,
∴方程分别在区间上各有一解,即存在5个满足题意的点
②当时,∵,∴方程在区间上无解。
综上所述:满足题意的点有5个。 …………………………9分
(3)由(2)可知:
∴当时,,在上递增;
当时,,在上递减。
∴当时,,
又
∴对任意的,当时,都有,
∴。
∴ …………………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com