精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

设函数对任意的实数,都有,且当时,

(1)若时,求的解析式;

(2)对于函数,试问:在它的图象上是否存在点,使得函数在点处的切线与平行。若存在,那么这样的点有几个;若不存在,说明理由。

(3)已知,且 ,记,求证:

 

【答案】

 

解:(1);(2)满足题意的点有5个;(3)  .                          

 

【解析】本试题主要考查了函数的解析式的求解,以及过点的切线方程的问题,和不等式的证明 的综合运用。

(1)第一问中将所求的变量转化为已知的区间,利用已知的关系式求解得到解析式。

(2)在第一问的基础上进一步得到函数的一般式,然后利用导数的思想,只要判定导函数为零,方程有无解即可。

(3)在第二问的得到函数的单调性,以及函数的最大值,然后结合函数的最值得到不等式,再结合等比数列的求和的思想得到。

解:(1)∵

,则,∴。…………………2分

(2)设,则

,即为………4分

 

∴问题转化为判断:关于的方程内是否解,即内是否有解,……………………6分

函数 的图象是开口向上的抛物线,其对称轴是直线

判别式

时,∵

∴方程分别在区间上各有一解,即存在5个满足题意的点

②当时,∵,∴方程在区间上无解。

综上所述:满足题意的点有5个。                       …………………………9分

(3)由(2)可知:

∴当时,上递增;

时,上递减。

∴当时,

∴对任意的,当时,都有

                                       …………………………13分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案