精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足a1=3,an-1+an+an+1=6(n≥2),Sn=a1+a2+…+an,则S10=21.

分析 由已知推导出a1+a2+a3=a4+a5+a6=a7+a8+a9=6,a10=3,由此能求出结果.

解答 解:∵数列{an}满足a1=3,an-1+an+an+1=6(n≥2),Sn=a1+a2+…+an
∴a1+a2+a3=3+a2+a3=6,∴a2+a3=3,
又a2+a3+a4=6,∴a4=3,
又a4+a5+a6=3+a5+a6=6,∴a5+a6=3,
∴a5+a6+a7=3,∴a7=3,
∴a7+a8+a9=3+a8+a9=6,∴a8+a9=3,
∴a8+a9+a10=6,∴a10=3,
S10=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+a10=6+6+6+3=21.
故答案为:21.

点评 本题考查数列的前10项和的求法,是中档题,解题时要认真审题,注意数列的递推公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以自豪的发现.我们来重温这个伟大发现.经计算球的体积等于圆柱体积的$\frac{2}{3}$倍.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程sin2x+cosx+k=0有解,则实数k的取值范围为(  )
A.$-1≤k≤\frac{5}{4}$B.$-\frac{5}{4}≤k≤1$C.$0≤k≤\frac{5}{4}$D.$-\frac{5}{4}≤k≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\int_{\;-2}^{\;2}{(\sqrt{4-{x^2}}-{x^{2017}}})dx$=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设△ABC的内角A、B、C所对边的长分别为a、b、c,若a+c=2b,3sinB=5sinA,则角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为(1,0),离心率为$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过点P(0,3)的直线m与C交于A、B两点,若A是PB的中点,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设α∈(-$\frac{π}{2}$,$\frac{π}{2}$),sinα=-$\frac{\sqrt{3}}{3}$,求sin2α及cos(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.己知双曲线E的中心在原点,F(5,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为(9,$\frac{9}{2}$),则E的方程为(  )
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=xlnx,g(x)=x3+ax2-x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案