精英家教网 > 高中数学 > 题目详情

如图,已知平行六面体ABCDA1B1C1D1的底面?ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.

(1)求证: C1CBD

(2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.

(1)证明略,(2) =1时,A1C⊥平面C1BD.


解析:

(1)证明: 设=, =,,依题意,||=||,、?中两两所成夹角为θ,于是

=

=()=··=||·||cosθ-||·||cosθ=0,∴C1CBD.

(2)解:若使A1C⊥平面C1BD,只须证A1CBDA1CDC1

=(++)·()=||2+··-||2

=||2-||2+||·||cosθ-||·||·cosθ=0,得

当|=||时,A1CDC1,同理可证当||=||时,A1CBD

=1时,A1C⊥平面C1BD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知平行六面体OABC-O1A1B1C1,点G是上底面O1A1B1C1的中心,且
OA
=
a
OC
=
b
OO1
=
c
,则用
a
b
c
表示向量
OG
为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1(底面是平行四边形的四棱柱)
①求证:平面AB1D1∥平面BDC1
②若平行六面体ABCD-A1B1C1D1各棱长相等且AB⊥平面BCC1B1,E为CD的中点,AC1∩BD1=0,求证:OE⊥平面ABC1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求证:面O1DC⊥面ABCD;
(2)若∠A1AB=60°,求二面角C-AA1-B大小;
(3)若点E,F分别在棱AA1,BC上,且AE=2EA1,问点F在何处时,EF⊥AD.

查看答案和解析>>

同步练习册答案