【题目】已知函数(为自然底数),且.
(1)当时,对任意的,都有不等式,求实数的取值范围;
(2)若函数是上的减函数,求的取值范围.
科目:高中数学 来源: 题型:
【题目】设为三次函数,且其图象关于原点对称,当时,的极小值为-1,则
(1)函数的解析式__________;
(2)函数的单调递增区间为___________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. 命题“若,则”的否命题为:“若则”
B. 若为真命题,为假命题,则均为假命题
C. 命题“若成等比数列,则”的逆命题为真命题
D. 命题“若,则”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查教师对教育改革认识水平,现从某市年龄在的教师队伍中随机选取100名教师,得到的频率分布直方图如图所示,若从年龄在中用分层抽样的方法选取6名教师代表.
(1)求年龄在中的教师代表人数;
(2)在这6名教师代表中随机选取2名教师,求在中至少有一名教师被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是各项均不为的等差数列,公差为,为其前项和,且满足
,.数列满足,为数列的前n项和.
(1)求、和;
(2)若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60°,G为BC的中点,H为CD中点.
(1)求证:平面FGH∥平面BED;
(2)求证:BD⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园举办雕塑展览吸引着四方宾客,旅游人数与人均消费(元)的关系如下:.
(1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?
(2)若公园每天运营成本为5万元(不含工作人员的工资),还要上缴占旅游收入的税收,其余自负盈亏,目前公园的工作人员维持在40人,要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?(注:旅游收入=旅游人数×人均消费)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com