精英家教网 > 高中数学 > 题目详情
7.函数$f(x)=\frac{1}{{\sqrt{1-x}}}$的定义域是(  )
A.[1,+∞)B.(-∞,1)C.(-∞,1]D.(1,+∞)

分析 直接由分母中根式内部的代数式大于0求得x的取值范围得答案.

解答 解:要使原函数有意义,则1-x>0,即x<1.
∴函数$f(x)=\frac{1}{{\sqrt{1-x}}}$的定义域是(-∞,1).
故选:B.

点评 本题考查函数的定义域及其求法,考查了不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足an+1=an+2(n∈N+)且a1,a3,a7成等比.
(1)求数列{an}的通项公式.
(2)设数列{bn}满足bn+1-bn=an(n∈N+)且b1=2,求数列$\left\{{\frac{1}{b_n}}\right\}$得前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+1}$+$\frac{(x-1)^{0}}{\sqrt{2-x}}$的定义域是[-1,1)∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)求函数$y=\sqrt{x+2}+\frac{1}{x+1}$的定义域.
(Ⅱ)求值:27${\;}^{\frac{2}{3}}$+16${\;}^{-\frac{1}{2}}$-($\frac{1}{2}$)-2-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x+2)2+y2=4,相互垂直的两条直线l1、l2都过点A(a,0)
(1)若A在圆C内部,求a的取值范围;
(2)当a=2时,若圆心为M(1,m)的圆和圆C外切且与直线l1、l2都相切,求圆M的方程;
(3)当a=-1时,若l1、l2被圆C所截得弦长相等,求此时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆Q过定点F(0,-1),且与直线y=1相切;椭圆N的对称轴为坐标轴,中心为坐标原点O,F是其一个焦点,又点(0,2)在椭圆N上.
(1)求动圆圆心Q的轨迹M的方程和椭圆N的方程;
(2)过点(0,-4)作直线l交轨迹M于A,B两点,连结OA,OB,射线OA,OB交椭圆N于C,D两点,求△OCD面积的最小值.
(3)附加题(本题额外加5分):过椭圆N上一动点P作圆x2+(y-1)2=1的两条切线,切点分别为G,H,求$\overrightarrow{PG}•\overrightarrow{PH}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)是定义在R上的偶函数,当0≤x<3时,y=x;当x≥3时,$y=-\frac{1}{3}{(x-3)^2}+3$
(1)在下面的直角坐标系中直接画出函数f(x)的图象;
(2)根据函数图象写出f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.经过点(14,10),且平行于直线4x-2y+7=0的直线方程是(  )
A.x-2y+6=0B.4x-2y+9=0C.x+2y-34=0D.2x-y-18=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知x>2,求$y=x+\frac{3}{x-2}$的最小值;
(2)已知$0<x<\frac{1}{2}$,求y=3x(1-2x)的最大值.

查看答案和解析>>

同步练习册答案