精英家教网 > 高中数学 > 题目详情
(2012•陕西)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是
-2≤a≤4
-2≤a≤4

B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=
5
5

C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为
3
3
分析:A;利用表示数轴上的x到a的距离加上它到1的距离,它的最大值等于3,作图可得实数a的取值范围.
B;利用相交弦定理AE•EB=CE•ED,AB⊥CD可得DE=
5
;在Rt△EDB中,由射影定理得:DE2=DF•DB=5,即得答案;
C;将直线与圆的极坐标方程化为普通方程分别为:x=
1
2
,(x-1)2+y2=1,从而可得相交弦长.
解答:解:A.∵存在实数x使|x-a|+|x-1|≤3成立,
而|x-a|+|x-1|表示数轴上的x到a的距离加上它到1的距离,
又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x-a|+|x-1|≤3,

∴-2≤a≤4,
故答案为:-2≤a≤4.
B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,
∴DE•CE=AE•EB=1×5=5,即DE=
5

在Rt△EDB中,由射影定理得:DE2=DF•DB=5.
故答案为:5.
C;∵2ρcosθ=1,
∴2x=1,即x=
1
2

又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,
∴(x-1)2+y2=1,
∴圆心(1,0)到直线x=
1
2
的距离为
1
2

∴相交弦长的一半为
12-(
1
2
)
2
=
3
2

∴相交弦长为
3

故答案为:
3
点评:本题A考查绝对值不等式的解法,绝对值的意义,求出|x-a|+|x-1|的最大值是3是解题的关键,考查作图与理解能力,属于中档题.
本题B考查与圆有关的比例线段,掌握相交弦定理与射影定理是解决问题的关键,而C着重简单曲线的极坐标方程,化普通方程是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•陕西)下列函数中,既是奇函数又是增函数的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)设动点P(x,y)(x≥0)到定点F(
1
2
,0)
的距离比到y轴的距离大
1
2
.记点P的轨迹为曲线C.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M 在y轴的截得的弦,当M 运动时弦长BD是否为定值?说明理由;
(Ⅲ)过F(
1
2
,0)
作互相垂直的两直线交曲线C于G、H、R、S,求四边形面GRHS的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)已知f(x)=excosx,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西三模)袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2 的小球n个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为a,第二次取出的小球标号为b.
①记“a+b=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西)在三角形ABC中,角A,B,C所对应的长分别为a,b,c,若a=2,B=
π
6 
,c=2
3
,则b=
2
2

查看答案和解析>>

同步练习册答案