精英家教网 > 高中数学 > 题目详情
20.函数f(x)=$\frac{1}{3}{x^3}$-4x+4在区间[0,3]上的最大值与最小值分别是(  )
A.$1,-\frac{4}{3}$B.$4,-\frac{4}{3}$C.$4,\frac{4}{3}$D.$\frac{4}{3},-4$

分析 先求导函数,研究出函数在区间[0,3]上的单调性,从而确定出函数最值的位置,求出函数的最值.

解答 解:∵函数f(x)=$\frac{1}{3}{x^3}$-4x+4,
∴f′(x)=x2-4.x∈[0,3],
令f′(x)>0,解得3≥x>2;令f′(x)<0,解得0≤x<2
故函数在[0,2]上是减函数,在[2,3]上是增函数,
所以函数在x=2时取到最小值f(2)=$\frac{8}{3}$-8+4=-$\frac{4}{3}$,f(0)=4,f(3)=9-12+4=1
在x=0时取到最大值:4.
故选:B.

点评 本题重点考查导数知识的运用,考查函数的最值、单调性,解答本题关键是研究出函数的单调性,利用函数的单调性确定出函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图所示,某几何体的正视图、侧视图均为等腰三角形,俯视图是正方形,则该几何体的体积是(  )
A.2B.4C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{8\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知命题p:9-x2>0,q:x2+x-6<0,则p是q的必要不充分条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中的一个).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若点(m,n)在直线$4x-3y-5\sqrt{2}=0$上,则m2+n2的最小值是(  )
A.2B.2$\sqrt{2}$C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论中正确的是(  )
A.a>b⇒a-c<b-cB.a>b⇒a2>b2C.a>b>0⇒$\frac{1}{a}<\frac{1}{b}$D.a>b⇒ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式(x-a)(x-a2)<0.
(1)当a=2时,求不等式的解集;
(2)当a∈R,a≠0且a≠1时,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${∫}_{1}^{e}$$\frac{ln{x}^{2}}{x}$dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=(2cosx,\sqrt{3}),\overrightarrow b=(sinx,cos2x)$,设f(x)=$\overrightarrow a•\overrightarrow b$,$g(x)=mcos(2x-\frac{π}{6})-2m+3(m>0)$,若对任意${x_1}∈[0,\frac{π}{4}]$都存在${x_2}∈[0,\frac{π}{4}]$,使得g(x1)=f(x2)成立.则实数m的取值范围是(  )
A.$[\frac{2}{3},2)$B.$(\frac{2}{3},2]$C.$[1,\frac{4}{3}]$D.$(1,\frac{4}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-2x+2,x∈[0,3],则函数的值域为[1,5].

查看答案和解析>>

同步练习册答案