A. | $1,-\frac{4}{3}$ | B. | $4,-\frac{4}{3}$ | C. | $4,\frac{4}{3}$ | D. | $\frac{4}{3},-4$ |
分析 先求导函数,研究出函数在区间[0,3]上的单调性,从而确定出函数最值的位置,求出函数的最值.
解答 解:∵函数f(x)=$\frac{1}{3}{x^3}$-4x+4,
∴f′(x)=x2-4.x∈[0,3],
令f′(x)>0,解得3≥x>2;令f′(x)<0,解得0≤x<2
故函数在[0,2]上是减函数,在[2,3]上是增函数,
所以函数在x=2时取到最小值f(2)=$\frac{8}{3}$-8+4=-$\frac{4}{3}$,f(0)=4,f(3)=9-12+4=1
在x=0时取到最大值:4.
故选:B.
点评 本题重点考查导数知识的运用,考查函数的最值、单调性,解答本题关键是研究出函数的单调性,利用函数的单调性确定出函数的最值.
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | $\frac{{4\sqrt{2}}}{3}$ | D. | $\frac{{8\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b⇒a-c<b-c | B. | a>b⇒a2>b2 | C. | a>b>0⇒$\frac{1}{a}<\frac{1}{b}$ | D. | a>b⇒ac2>bc2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[\frac{2}{3},2)$ | B. | $(\frac{2}{3},2]$ | C. | $[1,\frac{4}{3}]$ | D. | $(1,\frac{4}{3})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com