精英家教网 > 高中数学 > 题目详情

【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得第28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛MVP(最有价值球员),如表是易建联在这9场比赛中投篮的统计数据.

比分

易建联技术统计

投篮命中

罚球命中

全场得分

真实得分率

中国91﹣42新加坡

3/7

6/7

12

59.52%

中国76﹣73韩国

7/13

6/8

20

60.53%

中国84﹣67约旦

12/20

2/5

26

58.56%

中国75﹣62哈萨克期坦

5/7

5/5

15

81.52%

中国90﹣72黎巴嫩

7/11

5/5

19

71.97%

中国85﹣69卡塔尔

4/10

4/4

13

55.27%

中国104﹣58印度

8/12

5/5

21

73.94%

中国70﹣57伊朗

5/10

2/4

13

55.27%

中国78﹣67菲律宾

4/14

3/6

11

33.05%

注:①表中a/b表示出手b次命中a次;
②TS%(真实得分率)是衡量球员进攻的效率,其计算公式为:
TS%=

(Ⅰ)从上述9场比赛中随机选择一场,求易建联在该场比赛中TS%超过50%的概率;
(Ⅱ)从上述9场比赛中随机选择两场,求易建联在这两场比赛中TS%至少有一场超过60%的概率;
(Ⅲ)用x来表示易建联某场的得分,用y来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断y与x之间是否具有线性相关关系?结合实际简单说明理由.

【答案】解:(Ⅰ)设易建联在比赛中TS%超过50%为事件A,
则共有8场比赛中TS%超过50%,
故P(A)=
(Ⅱ)设易建联在这两场比赛中TS%至少有一场超过60%为事件B,
则易建联在这两场比赛中TS%至少有一场均不超过60%为事件
由题意可得易建联在比赛中TS%不超过60%的有5场,
故P( )= =
故P(B)=1﹣P( )=
(Ⅲ)不具有线性相关关系.
因为散点图并不是分布在某一条直线的周围.
篮球是集体运动,个人无法完全主宰一场比赛
【解析】(Ⅰ)由已知,结合古典概型概率计算公式可得:易建联在该场比赛中TS%超过50%的概率;(Ⅱ)由已知,结合古典概型概率计算公式可得:易建联在这两场比赛中TS%至少有一场超过60%的概率;(Ⅲ)根据散点图并不是分布在某一条直线的周围,可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本题满分16某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.

1当一次订购量为多少个时,每件商品的实际批发价为102元?

2当一次订购量为个, 每件商品的实际批发价为元,写出函数的表达式;

3根据市场调查发现,经销商一次最大定购量为个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二项式展开式中各项系数之和比各二项式系数之和大240,

(1)求;(2)求展开式中含项的系数;(3)求展开式中所有含的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.

(1)求出y关于x的函数解析式及x的取值范围;

(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中an= (n∈N*),将数列{an}中的整数项按原来的顺序组成数列{bn},则b2018的值为(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=lnx+
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)﹣ +ax2﹣2x有两个不同的极值点,其极小值为M,试比较2M与﹣3的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中an= (n∈N*),将数列{an}中的整数项按原来的顺序组成数列{bn},则b2018的值为(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为(3, ).曲线C的参数方程为ρ=2cos(θ﹣ )(θ为参数).
(Ⅰ)写出点P的直角坐标及曲线C的直角坐标方程;
(Ⅱ)若Q为曲线C上的动点,求PQ的中点M到直线l:2ρcosθ+4ρsinθ= 的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题一定正确的是(
A.在等差数列{an}中,若ap+aq=ar+aδ , 则p+q=r+δ
B.已知数列{an}的前n项和为Sn , 若{an}是等比数列,则Sk , S2k﹣Sk , S3k﹣S2k也是等比数列
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列
D.在数列{an}中,若ap?aq=a ,则ap , ar , aq成等比数列

查看答案和解析>>

同步练习册答案