精英家教网 > 高中数学 > 题目详情
(2013•惠州一模)某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组 频数 频率
(3.9,4.2] 3 0.06
(4.2,4.5] 6 0.12
(4.5,4.8] 25 x
(4.8,5.1] y z
(5.1,5.4] 2 0.04
合计 n 1.00
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
分析:(I)根据题意,由(5.1,5.4]一组频数为2,频率为0.04,可得
2
n
=0.04
,解可得n的值,进而由x=
25
n
=0.5
,可得x的值,由频数之和为50,可得y的值,由频率、频数的关系可得z的值;
(II)设样本视力在(3.9,4.2]的3人为a,b,c,样本视力在(5.1,5.4]的2人为d,e;由题意列举从5人中任取两人的基本事件空间Ω,可得其基本事件的数目,设事件A表示“抽取的两人的视力差的绝对值低于0.5”,由Ω可得基本事件数目,由等可能事件的概率,计算可得答案.
解答:解:(I)由表可知,样本容量为n,
由(5.1,5.4]一组频数为2,频率为0.04,则
2
n
=0.04
,得n=50
x=
25
n
=0.5
,解可得,x=50;
y=50-3-6-25-2=14,z=
y
n
=
14
50
=0.28

(II)设样本视力在(3.9,4.2]的3人为a,b,c;样本视力在(5.1,5.4]的2人为d,e.   
由题意从5人中任取两人的基本事件空间为:Ω={(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(a,b),(a,c),(b,c),(d,e)},共10个基本事件;
设事件A表示“抽取的两人的视力差的绝对值低于0.5”,则事件A包含的基本事件有:(a,b),(a,c),(b,c),(d,e),共4个基本事件;
P(A)=
4
10
=
2
5

故抽取的两人的视力差的绝对值低于0.5的概率为
2
5
点评:本题考查等可能事件的概率与频率分布表的应用,在列举时,注意按一定的顺序,做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州一模)在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(坐标系与参数方程选做题)
若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(几何证明选做题)
如图圆O的直径AB=6,P是AB的延长线上一点,过点P作圆O的切线,切点为C,连接AC,若∠CPA=30°,则PC=
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)已知向量
a
=(-1,1)
b
=(3,m)
a
∥(
a
+
b
)
,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)若集合A={x|x2-4x-5=0},B={x|x2=1},则A∩B=(  )

查看答案和解析>>

同步练习册答案