精英家教网 > 高中数学 > 题目详情

【题目】如图,在梯形中,,四边形

为矩形,平面平面.

I)求证:平面

II)点在线段上运动,设平面与平面所成二面角的平面角为

试求的取值范围.

【答案】(1)详见解析;(2).

【解析】

(1)由题意结合勾股定理和余弦定理可证得BCAC,结合面面垂直的性质定理可得BC⊥平面ACFE.

(2)CA,CB,CF所在的直线为x,y,z轴建立空间直角坐标系,由题意可得平面MAB的一个法向量n1=(1,,),平面FCB的一个法向量n2=(1,0,0),则 cosθ=,结合三角函数的性质可得cosθ[,].

(1)在梯形ABCD,ABCD,AD=DC=CB=1,ABC=60°,

AB=2,AC2=AB2+BC2-2AB·BC·cos 60°=3,

AB2=AC2+BC2,BCAC.

又平面ACFE⊥平面ABCD,平面ACFE平面ABCD=AC,BC平面ABCD,

BC⊥平面ACFE.

(2)(1),可分别以CA,CB,CF所在的直线为x,y,z轴建立如图所示的空间直角坐标系,

FM=λ(0≤λ),C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),

=(-,1,0),=(λ,-1,1).

n1=(x,y,z)为平面MAB的法向量,

,,

x=1,n1=(1,,)为平面MAB的一个法向量,

易知n2=(1,0,0)是平面FCB的一个法向量,

cosθ=.

0≤λ, ∴当λ=0,cosθ有最小值, λ=,cosθ有最大值,cosθ[,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥ABC﹣A1B1C1中,AA1⊥底面ABC,D,E分别是BC,A1B1的中点.

(1)求证:DE∥平面ACC1A1
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直线BC与平面AB1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x+2xf′(1),则曲线f(x)在x=0处的切线在x轴上的截距为(
A.1
B.5ln3
C.﹣5ln3
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为 ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为: (t为参数).
(1)求圆C和直线l的极坐标方程;
(2)点P的极坐标为(1, ),直线l与圆C相交于A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数满足又定义域为实数集R的函数 是奇函数

确定的解析式;

的值;

若对任意的R,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个线性回归方程,变量x增加1个单位时,y平均增加5个单位;

③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;

④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.

以上错误结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式恒成立,求实数的最大值;

(2)当时,函数有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.

(1)求S=的概率;

(2)求S的分布列及数学期望E(S).

查看答案和解析>>

同步练习册答案