精英家教网 > 高中数学 > 题目详情

集合M={(x,y)|x-y+1≤0},N={(x,y)|2x-y-2≤0},P={(x,y)|x≥1},若T=M∩N∩P,点E(x,y)∈T,则z=x2+y2的最小值是


  1. A.
    1
  2. B.
    2
  3. C.
    5
  4. D.
    25
A
分析:本题属于线性规划中的延伸题,将满足M∩N∩P的点E(x,y)∈T看成平面区域,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点(0,0)构成的线段的长度问题.
解答:解:先根据约束条件画出可行域,
z=x2+y2
表示可行域内点到原点距离OP的平方,
当P在点(1,0)时,z最小,最小值为12+02=1,
故答案为:1.
故选A.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合M={1,x,y},N={x2,x,xy},若M=N,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={f(x)|y=f(x)},其元素f(x)须同时满足下列三个条件:
①定义域为(-1,1);
②对于任意的x,y∈(-1,1),均有f(x)+f(y)=f(
x+y
1+xy
)

③当x<0时,f(x)>0.
(Ⅰ)若函数f(x)∈M,证明:y=f(x)在定义域上为奇函数;
(Ⅱ)若函数h(x)=ln
1-x
1+x
,判断是否有h(x)∈M,说明理由;
(Ⅲ)若f(x)∈M且f(-
1
2
)=1
,求函数y=f(x)+
1
2
的所有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

用特征性质描述法表示图中阴影部分的点(含边界上的点)组成的集合M是
{(x,y)|
-1≤x≤0
0≤y≤1
0≤x≤2
-1≤y≤0
}
{(x,y)|
-1≤x≤0
0≤y≤1
0≤x≤2
-1≤y≤0
}

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高一(上)期中数学试卷(解析版) 题型:解答题

已知集合M={f(x)|y=f(x)},其元素f(x)须同时满足下列三个条件:
①定义域为(-1,1);
②对于任意的x,y∈(-1,1),均有
③当x<0时,f(x)>0.
(Ⅰ)若函数f(x)∈M,证明:y=f(x)在定义域上为奇函数;
(Ⅱ)若函数,判断是否有h(x)∈M,说明理由;
(Ⅲ)若f(x)∈M且,求函数的所有零点.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高一(上)期中数学试卷(解析版) 题型:解答题

已知集合M={f(x)|y=f(x)},其元素f(x)须同时满足下列三个条件:
①定义域为(-1,1);
②对于任意的x,y∈(-1,1),均有
③当x<0时,f(x)>0.
(Ⅰ)若函数f(x)∈M,证明:y=f(x)在定义域上为奇函数;
(Ⅱ)若函数,判断是否有h(x)∈M,说明理由;
(Ⅲ)若f(x)∈M且,求函数的所有零点.

查看答案和解析>>

同步练习册答案