精英家教网 > 高中数学 > 题目详情
13.在△ABC中,角A、B、C的对边分别为a、b、c,且a、b、c组成一个公差为d=-1的等差数列,若A=2C,试求△ABC的三边a,b,c的长.

分析 依题意可得,a=b+1,c=b-1(b>1),由正弦定理及A=2C,得$\frac{b+1}{sin2C}=\frac{b-1}{sinC}$,化简可得 $cosC=\frac{b+1}{2(b-1)}$.①,由余弦定理可得:$cosC=\frac{b+4}{2(b+1)}$.②,由①②两式联立,即可得解.

解答 解:依题意,a,b,c组成一个公差d=-1的等差数列,即a=b+1,c=b-1(b>1)
由正弦定理,$\frac{a}{sinA}$=$\frac{c}{sinC}$及A=2C,得$\frac{b+1}{sin2C}=\frac{b-1}{sinC}$,
∴$\frac{b+1}{b-1}=\frac{sin2C}{sinC}=2cosC$,即 $cosC=\frac{b+1}{2(b-1)}$.①
由余弦定理,$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}$=$\frac{{{{(b+1)}^2}+{b^2}-{{(b-1)}^2}}}{2(b+1)b}$
得   $cosC=\frac{b+4}{2(b+1)}$.②
由①②两式联立,消去cosC得$\frac{b+4}{b+1}=\frac{b+1}{b-1}$,解之得b=5.
所以a=6,b=5,c=4.

点评 本题主要考查了正弦定理,余弦定理,等差数列的性质的应用,考查了计算能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.根据三个点(0,2),(4,4),(8,9)的坐标数据,求得的回归直线方程是(  )
A.$\stackrel{∧}{y}$=3x-1B.$\stackrel{∧}{y}$=$\frac{7}{8}$x+$\frac{3}{2}$C.$\stackrel{∧}{y}$=x+2D.$\stackrel{∧}{y}$=$\frac{1}{3}$x+$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知焦点在y轴上的椭圆方程为$\frac{x^2}{6-m}+\frac{y^2}{m-4}=1$,则m的范围为(  )
A.(4,6)B.(5,6)C.(6,+∞)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知P(-2,-3)和以点Q为圆心的圆(x-4)2+(y-2)2=9.
(1)求以PC为直径的圆Q′的方程;
(2)设⊙Q′与⊙Q相交于点A、B,求直线AB的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,则f(x)的图象(  )
A.关于直线x=$\frac{π}{4}$对称B.关于点($\frac{π}{4}$,0)对称
C.关于直线x=$\frac{π}{3}$对称D.关于点($\frac{π}{3}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lg(3-x)+$\frac{1}{\sqrt{x-1}}$的定义于为A,函数g(x)=$\frac{2}{x+1}$,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),且f($\frac{1}{2}$a+$\frac{π}{4}$)=-$\frac{4\sqrt{2}}{5}$,$\frac{17π}{12}$<α<$\frac{7π}{4}$.
(1)求cosα;
(2)求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数,在其定义域内既是奇函数又是增函数的是(  )
A.y=-log2xB.y=3xC.y=-$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x+3|+|x-1|的最小值为m.
(1)求m的值;
(2)若正实数a,b满足$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{3}$,求证:$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$≥$\frac{m}{2}$.

查看答案和解析>>

同步练习册答案