精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知△ABC和△BCD所在平面互相垂直,∠ABC=∠BCD=90°,AB=a,BC=b,CD=c,且a2+b2+c2=1,则三棱锥A-BCD的外接球的表面积为
 
分析:要求外接球,需知到其半径,因为球心到球面的点的距离相等,可以找出一点到ABCD四个点的距离相等,求解即可.
解答:解:因为球心到球面的点的距离相等,可以找出一点到ABCD四个点的距离相等,在直角三角形中斜边上的中点到各顶点距离相等,
可知AD中点O到A,B,C,D的距离相等,所以AO=
1
2

所以S=4π (
1
2
)
2
点评:本题考查学生的空间想象能力,以及对三角形的性质的使用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知△ABC和△DBC所在的平面互相垂直,AB=BC=BD,∠CBA=∠DBC=120°,求:
(1)AD与BC所成的角;
(2)AD和平面BCD所成的角;
(3)二面角A-BD-C的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年江苏省盐城市东台市高二(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知△ABC和△DBC所在的平面互相垂直,AB=BC=BD,∠CBA=∠DBC=120°,求:
(1)AD与BC所成的角;
(2)AD和平面BCD所成的角;
(3)二面角A-BD-C的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京39中高三(上)期中数学试卷(文科)(解析版) 题型:填空题

如图,已知△ABC和△BCD所在平面互相垂直,∠ABC=∠BCD=90°,AB=a,BC=b,CD=c,且a2+b2+c2=1,则三棱锥A-BCD的外接球的表面积为   

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市宣武区高三(上)期末数学试卷(理科)(解析版) 题型:填空题

如图,已知△ABC和△BCD所在平面互相垂直,∠ABC=∠BCD=90°,AB=a,BC=b,CD=c,且a2+b2+c2=1,则三棱锥A-BCD的外接球的表面积为   

查看答案和解析>>

同步练习册答案