精英家教网 > 高中数学 > 题目详情

已知向量,n∈N*,向量垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.

(1);(2)

解析试题分析:
解题思路:(1)利用得出数列的递推式,即得数列是等比数列,求通项即可;(2)利用错位相减法求和.
规律总结:以平面向量为载体考查数列问题,体现了平面向量的工具性,要灵活选择向量知识;数列求和的方法主要有:倒序相加法、裂项抵消法、分组求和法、错位相减法.
试题解析:(1)∵向量p与q垂直,
∴2nan+1-2n+1an=0,即2nan+1=2n+1an
=2,∴{an}是以1为首项,2为公比的等比数列,
∴an=2n-1.
(2)∵bn=log2an+1,∴bn=n,∴an·bn=n·2n-1
∴Sn=1+2·2+3·22+4·23+…+n·2n-1,①
∴2Sn=1·2+2·22+3·23+4·24+…+n·2n,②
①-②得,
-Sn=1+2+22+23+24+…+2n-1-n·2n
-n·2n=(1-n)2n-1,
∴Sn=1+(n-1)2n.
考点:1.等比数列;2.错位相减法求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在等比数列中,,公比,若,则的值为      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在等比数列中,已知,则该数列的前12项的和为        .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知等比数列所有项均为正数,首,且成等差数列.
(I)求数列的通项公式;
(II)数列的前n项和为,若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的等比数列{an}满足a3 =8,a5 +a7=160,{an}的前n项和为Sn
(1)求an
(2)若数列{bn}的通项公式为bn=(-1)n·n(n∈N+),求数列{an·bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足条件:
(1)求证数列是等比数列,并求数列的通项公式;
(2)求数列的前项和,并求使得对任意N*都成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列的前项和为,已知成等差数列,(1)求数列的公比,(2)若,求,并讨论的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在等比数列中, 若是方程的两根,则=               .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

等比数列中,是方程的两个根,则____;

查看答案和解析>>

同步练习册答案