精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是(  )
分析:由题设知,函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2.a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的一个是f(2).a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的一个是f(-1)和f(5).
解答:解:∵对任意实数t都有f(2+t)=f(2-t)成立,
∴函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2,
当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的一个是f(2).
当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的一个是f(-1)和f(5).
故选B.
点评:本题考查二次函数的性质和应用,解题时要注意函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2.再由a的符号确定函数值f(-1),f(1),f(2),f(5)中,最小的一个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案