精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.

(1)若曲线参数方程为:为参数),求曲线的直角坐标方程和曲线的普通方程;

(2)若曲线参数方程为:为参数),,且曲线与曲线交点分别为,求的取值范围.

【答案】(1)见解析;(2).

【解析】分析:(1)两边同乘以利用 即可得曲线的直角坐标方程利用平方法消去参数可得曲线的普通方程;(2)将的参数方程代入的直角坐标方程根据直线参数的几何意义,利用韦达定理、辅助角公式结合三角函数的有界性可得结果.

详解(1)

曲线的直角坐标方程为:

曲线的普通方程为:

(2)将的参数方程:代入的方程:得:

的几何意义可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点斜率为的直线交抛物线于 两点,且.

1求该抛物线的方程;

2过点任意作互相垂直的两条直线,分别交曲线于点.设线段的中点分别为求证:直线恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数u(x)=xlnx,v(x)x﹣1,m∈R.

(1)令m=2,求函数h(x)的单调区间;

(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数

I)若曲线在点(0)处的切线为x轴,求a的值;

II)求函数[0l]上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:

(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)

(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若处取得极值,求处的切线方程;

(2)讨论的单调性;

(3)若函数上无零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线,直线交于两点,.

(1)求的方程;

(2)斜率为)的直线过线段的中点,与交于两点,直线分别交直线两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家放开计划生育政策,鼓励一对夫妇生育2个孩子.在某地区的100000对已经生育了一胎夫妇中,进行大数据统计得,有100对第一胎生育的是双胞胎或多胞胎,其余的均为单胞胎.在这99900对恰好生育一孩的夫妇中,男方、女方都愿意生育二孩的有50000对,男方愿意生育二孩女方不愿意生育二孩的有对,男方不愿意生育二孩女方愿意生育二孩的有对,其余情形有对,且.现用样本的频率来估计总体的概率.

(1)说明“其余情形”指何种具体情形,并求出的值;

(2)该地区为进一步鼓励生育二孩,实行贴补政策:凡第一胎生育了一孩的夫妇一次性贴补5000元,第一胎生育了双胞胎或多胞胎的夫妇只有一次性贴补15000元.第一胎已经生育了一孩再生育了二孩的夫妇一次性再贴补20000元.这种补贴政策直接提高了夫妇生育二孩的积极性:原先男方或女方中只有一方愿意生育二孩的夫妇现在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫妇仍然不愿意生育二孩.设为该地区的一对夫妇享受的生育贴补,求

查看答案和解析>>

同步练习册答案