A. | (0,4) | B. | (-4,0) | C. | [0,$\frac{15}{4}$) | D. | ($\frac{1}{2}$,2) |
分析 作函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$与y=a的图象,再设x1<x2<x3,从而可得x2+x3=2×2=4,再求x1的范围即可.
解答 解:作函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+1,x≥0}\\{-1+lo{g}_{2}(-x),x<0}\end{array}\right.$与y=a的图象如下,
,
不妨设x1<x2<x3,
结合图象可知,x2+x3=2×2=4,-1+log24=1,-1+log2$\frac{1}{4}$=-3,
故-4≤x1<-$\frac{1}{4}$,
故0≤x1+x2+x3<$\frac{15}{4}$;
故选:C.
点评 本题考查了数形结合的应用及函数的零点的判断的应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/元 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.01 | 7.0 | 10.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com